ĐKXĐ: \(\left\{{}\begin{matrix}2x+y\ge1\\x+2y\ge2\\x+4y\ge0\end{matrix}\right.\)
\(pt\left(1\right)\Leftrightarrow\frac{\left(2x+y-1\right)-\left(x+2y-2\right)}{\sqrt{2x+y-1}+\sqrt{x+2y-2}}+\left(x-y+1\right)=0\)
\(\Leftrightarrow\frac{x-y+1}{\sqrt{2x+y-1}+\sqrt{x+2y-2}}+\left(x-y+1\right)=0\)\(\Leftrightarrow\left(x-y+1\right)\left(\frac{1}{\sqrt{2x+y-1}+\sqrt{x+2y-2}}+1\right)=0\)\(\Leftrightarrow x-y+1=0\)
Thế vào pt 2 => x;y
Đặt \(\left\{{}\begin{matrix}\sqrt{2x+y-1}=a\ge0\\\sqrt{x+2y-2}=b\ge0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=x-y+1\)
Phương trình thứ nhất trở thành:
\(a-b+a^2-b^2=0\)
\(\Leftrightarrow\left(a-b\right)\left(1+a+b\right)=0\Leftrightarrow a=b\)
\(\Leftrightarrow\sqrt{2x+y-1}=\sqrt{x+2y-2}\Rightarrow y=x+1\)
Thay xuống pt dưới:
\(4x^2-\left(x+1\right)^2+x+4-\sqrt{3x+1}-\sqrt{5x+4}=0\)
\(\Leftrightarrow3x^2-x+3-\sqrt{3x+1}-\sqrt{5x+4}=0\)
\(\Leftrightarrow3x^2-3x+x+1-\sqrt{3x+1}+x+2-\sqrt{5x+4}=0\)
\(\Leftrightarrow3x\left(x-1\right)+\frac{\left(x+1\right)^2-\left(3x+1\right)}{x+1+\sqrt{3x+1}}+\frac{\left(x+2\right)^2-\left(5x+4\right)}{x+2+\sqrt{5x+4}}=0\)
\(\Leftrightarrow3x\left(x-1\right)+\frac{x\left(x-1\right)}{x+1+\sqrt{3x+1}}+\frac{x\left(x-1\right)}{x+2+\sqrt{5x+4}}=0\)
\(\Leftrightarrow x\left(x-1\right)\left(3+\frac{1}{x+1+\sqrt{3x+1}}+\frac{1}{x+2+\sqrt{5x+4}}\right)=0\)