Bài 5: Phương trình chứa dấu giá trị tuyệt đối

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Kiểm tra xem - 2 là nghiệm của bất phương trình nào trong các bất phương trình sau :

a) \(-3x+2>-5\)

b) \(10-2x< 2\)

c) \(x^2-5< 1\)

d) \(\left|x\right|< 3\)

e) \(\left|x\right|>2\)

f) \(x+1>7-2x\)

Linh subi
22 tháng 4 2017 lúc 12:29

(Bài này mình sẽ trình bày theo cách khác, không tính cụ thể VT, VP mà thay trực tiếp giá trị vào bất phương trình.)

Lần lượt thay x = -2 vào từng bất phương trình:

a) -3x + 2 > -5 => -3(-2) + 2 > -5

=> 6 + 2 > - 5 => 8 > -5 (đúng)

Vậy x = -2 là nghiệm của bất phương trình này.

b) 10 - 2x < 2 => 10 - 2.(-2) < 2

=> 10 + 4 < 2 => 14 < 2 (sai)

Vậy x = -2 không là nghiệm của bất phương trình này.

c) x2 - 5 < 1 => (-2)2 - 5 < 1

=> 4 - 5 < 1 => -1 < 1 (đúng)

Vậy x = -2 là nghiệm của bất phương trình này.

d) |x| < 3 => |-2| < 3 => 2 < 3 (đúng)

Vậy x = -2 là nghiệm của bất phương trình này.

e) |x| > 2 => |-2| > 2 => 2 > 2 (sai)

Vậy x = -2 không là nghiệm của bất phương trình này.

f) x + 1 > 7 - 2x => (-2) + 1 > 7 - 2(-2) => -1 > 11 (sai)

Vậy x = - 2 không là nghiệm của bất phương trình này.

Kim Tuyến
25 tháng 4 2018 lúc 11:11

a) -3x + 2 > -5 => -3(-2) + 2 > -5

=> 6 + 2 > - 5 => 8 > -5 (đúng)

Vậy x = -2 là nghiệm của bất phương trình này.

b) 10 - 2x < 2 => 10 - 2.(-2) < 2

=> 10 + 4 < 2 => 14 < 2 (sai)

Vậy x = -2 không là nghiệm của bất phương trình này.

c) x\(^2\) - 5 < 1 => (-2)\(^2\)- 5 < 1

=> 4 - 5 < 1 => -1 < 1 (đúng)

Vậy x = -2 là nghiệm của bất phương trình này.

d) |x| < 3 => |-2| < 3 => 2 < 3 (đúng)

Vậy x = -2 là nghiệm của bất phương trình này.

e) |x| > 2 => |-2| > 2 => 2 > 2 (sai)

Vậy x = -2 không là nghiệm của bất phương trình này.

f) x + 1 > 7 - 2x => (-2) + 1 > 7 - 2(-2) => -1 > 11 (sai)

Vậy x = - 2 không là nghiệm của bất phương trình này.


Các câu hỏi tương tự
Tuấn Kiên Phạm
Xem chi tiết
Lê Thu Hiền
Xem chi tiết
Nguyễn Gia Linh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyễn Khánh Toàn
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết