cho hàm số y=(x-1)/(x+1) (C)
1,Khảo sát sự biến thiên và vẽ đồ thị hàm số
2,Tìm m để phương trình có nghiệm thuộc (0;π) : ((sinx-1)/(sinx+1))=m
Với giá trị nào của tham số m thì hàm số y=2(m2-3)sinx-2msin2x+3m-1 đạt cực đại tại x=pi/3
Chứng minh hàm số \(f\left(x\right)=x-sinx\) đồng biến trên \(\left[0;\dfrac{\pi}{2}\right]\)
Cho hàm số \(y=\frac{x-1}{x-2}\)có bao nhiêu giá trị nguyên của m để hàm số có g(x)=2019(f(sinx))-m cắt trục hoành tại hai điểm phân biệt thỏa [o;2pi]
xét tính chẵn lẻ của hàm số sau :
\(y=\frac{3tan^3x-5sinx}{2+cosx}\)
\(y=\frac{sinx}{x^4-3x^2+2}\)
Tìm GTLN GTNN của hàm số sau
y= sinx + cosx
\(y=\sqrt{2cosx+3}-4\)
\(y=sin^4x+cos^4x\)
Xét tính đơn điệu của hàm số y= sinx trên \(\left(-\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)\)
1) Tìm m để hàm số y=\(\frac{mx-3}{x+m+4}\) nghịch biến trong khoảng xác định?
2)Xác định m để hàm số y=\(\frac{2x^2+\left(m+1\right)x+2m-1}{x+1}\) tăng trên mỗi khoảng xác định?
3) Tìm GTLN,GTNN của
a) y=\(\frac{cos2x}{cosx-sinx}\) trên [\(\frac{\pi}{3}\);\(\frac{\pi}{2}\)]
b) y=sin3x +cos3x trên [0;2π]
Giá trị nhỏ nhất của hàm số y=\(\sqrt{1+sinx}+\sqrt{1+cosx}\) ?
Câu 1 : Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = \(\frac{x-1}{x^2-mx+m}\) có đúng một tiệm cận đứng
A. m = 0
B. m \(\le\) 0
C. m \(\in\left\{0;4\right\}\)
D. m \(\ge\) 4
Câu 2 : Tìm tập hợp tất cả các giá trị của tham số thực m để phương trình x3 + x2 + x = m(x2 +1)2 có nghiệm thuộc đoạn \(\left[0;1\right]\)
A. m \(\ge1\)
B. \(m\le1\)
C. \(0\le m\le1\)
D. \(0\le m\le\frac{3}{4}\)
Câu 3 : Tìm giá trị lớn nhất M của hàm số y = cos2x + 4cosx + 1
A. M = 5
B. M = 4
C. M = 6
D. M = 7
Câu 4 : Cho hàm số y = \(\frac{x}{x-1}\) . Mệnh đề nào sau đây là đúng ?
A. Hàm số đồng biến trên khoảng (0;1)
B. Hàm số đồng biến trên R \(|\left\{1\right\}\)
C. Hàm số nghịch biến trên \(\left(-\infty;1\right)\cup\left(1;+\infty\right)\)
D. Hàm số nghịch biến trên khoảng \(\left(-\infty;1\right)\) và \(\left(1;+\infty\right)\)
Câu 5 : Cho hàm số y = \(\frac{\left(m-1\right)sinx-2}{sinx-m}\) . Tìm tất cả các giá trị của tham số m để hàm số nghịch biến trên khoảng (0;\(\frac{\Pi}{2}\) )
A. \(m\in\left(-1;2\right)\)
B. m \(\in\left(-\infty;-1\right)\cup\left(2;+\infty\right)\)
C. m \(\in(-\infty;-1]\cup[2;+\infty)\)
D. m \(\in(-\infty;0]\cup[1;+\infty)\)