Tìm ĐK để căn thức sau xác định:
a) \(\sqrt{x^2+3x-10}\)
b) \(\sqrt{\dfrac{4x-4-x^2}{5}}\)
c) \(\sqrt{x-4\sqrt{x-4}}\)
a,Cho a +b =2 C/m \(B=a^5+b^5\ge2\)
b,Cho các số dường a,b,x,y t/m ĐK \(x^2+y^2=1\) và \(\dfrac{x^4}{a}+\dfrac{y^4}{b}=\dfrac{1}{a+b}\).C/m \(\dfrac{x}{\sqrt{a}}+\dfrac{\sqrt{b}}{y}\ge2\)
c,Với x,y là các số dương t/m: \(\left(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\right)^2=2010\) .Tính \(A=x\sqrt{1+y^2}+y\sqrt{1+x^2}\)
d,Chứng minh A=\(A=\sqrt{1+2008^2+\dfrac{2008^2}{2009^2}}+\dfrac{2008}{2009}\) có giá trị là 1 số tự nhiên
\(A=\sqrt{28}-\sqrt{63}+\dfrac{7+\sqrt{7}}{\sqrt{7}}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(B=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-3}\right)\dfrac{4\sqrt{x}+12}{\sqrt{x}}\) (ĐK x>0; x\(\ne9\))
a)Rút gọn A và B
b) Tìm các giá trị của x để giá trị biểu thức A lớn hơn giá trị biểu thức B
A= \(\dfrac{\left(\sqrt{x}-\sqrt{x}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\dfrac{x-y}{\sqrt{x}-\sqrt{y}}\)
a) tìm đk
b)rút gọn A
Cho bt P = (\(\dfrac{3+\sqrt{x}}{3-\sqrt{x}}\)-\(\dfrac{3-\sqrt{x}}{3+\sqrt{x}}-\dfrac{4x}{x-9}\)) : (\(\dfrac{5}{3-\sqrt{x}}-\dfrac{4\sqrt{x}+2}{3\sqrt{x}-x}\))
a) Rút gọn P
b) Tìm x sao cho P2 = 40P
c) Tìm đk của x để |P| > - P
cho biểu thức A= \(\left(\dfrac{2+\sqrt{x}}{2-\sqrt{x}}-\dfrac{2-\sqrt{x}}{2+\sqrt{x}}\right)\div\dfrac{\sqrt{x}+3}{2\sqrt{x}-x}\)
tìm đk của x để A>KHÔNG
Tìm ĐK để căn thức xác định:
a) \(\sqrt{x-9}+\sqrt{6-x}\)
b) \(\sqrt{\dfrac{-1}{x^2}}\)
cho biểu thức P=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)
a.tìm đk của x để P xđ
b.rút gọn P
c.tìm giá trị của x để P<0
cho x,y,z>0 chứng minh rằng
\(\sqrt{\dfrac{x^2}{x^2+\dfrac{1}{4}xy+y^2}}+\sqrt{\dfrac{y^2}{y^2+\dfrac{1}{4}yz+z^2}}+\sqrt{\dfrac{z^2}{z^2+\dfrac{1}{4}zx+x^2}}\le2\)