\(I=\frac{1}{2}\int\limits^4_0ln\left(x^2+9\right)d\left(x^2+9\right)=\frac{1}{2}\int\limits^{25}_9lnt.dt\)
Đặt \(\left\{{}\begin{matrix}u=lnt\\dv=dt\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\frac{dt}{t}\\v=t\end{matrix}\right.\)
\(\Rightarrow I=\frac{1}{2}\left(t.lnt|^{25}_9-\int\limits^{25}_9dt\right)=\frac{1}{2}\left(t.lnt-t\right)|^{25}_9=25ln5-9ln3-11\)
\(\Rightarrow a+b+c=25-9-11=5\)