\(\int_0^2\left[4f_{\left(x\right)}-3\right]dx\)
= \(4\int_0f_{\left(x\right)}^2dx-3x|^2_0\)
= 12 - 6
= 6
\(\int_0^2\left[4f_{\left(x\right)}-3\right]dx\)
= \(4\int_0f_{\left(x\right)}^2dx-3x|^2_0\)
= 12 - 6
= 6
Câu 35: Cho hàm số f(x) thỏa mãn \(\int_0^6f\left(x\right)dx=4\) và \(\int_2^6f\left(x\right)dx=-3\). Tìm tích phân I = \(\int_0^2f\left(v\right)-3dv\)
1/ I=\(\int_{-2}^2\left|x^2-1\right|dx\)
2/ I= \(\int_1^e\sqrt{x}.lnxdx\)
3/ I= \(\int_0^{\dfrac{\pi}{2}}\left(e^{sinx}+cosx\right)cosxdx\)
4/ I= \(\int_0^{\dfrac{pi}{2}}\dfrac{sin2x}{\sqrt{cos^2x+4sin^2x}}dx\)
5/ I= \(\int_0^{\dfrac{\pi}{4}}\sqrt{2}cos\sqrt{x}dx\)
6/ I= \(\int_1^{\sqrt{e}}\dfrac{1}{x\sqrt{1-ln^2x}}dx\)
7/ I= \(\int_{-\dfrac{\pi}{4}}^{\dfrac{\pi}{4}}\dfrac{sin^6x+cos^6x}{6^x+1}dx\)
tính các tích phân
1.\(\int_0^1\dfrac{4x+2}{x^2+x+1}dx\)
2.\(\int_0^1\dfrac{4x+1}{\left(2-x\right)^4}dx\)
3.\(\int_0^1\dfrac{x^2+1}{\left(x^3+3x\right)^3}dx\)
Cho hàm số y = f(x) có đạo hàm liên tục trên đoạn [0;1] thỏa mãn f(1) = 1,\(\int_0^1xf\left(x\right)dx=\dfrac{1}{5}\), \(\int_0^1\left[f'\left(x\right)\right]^2dx=\dfrac{9}{5}\) Tính tích phân \(I=\int_0^1f\left(x\right)dx\)
\(\int_0^{\frac{\Pi}{2}}c\text{os}^2x\left(1-sin^3x\right)dx\)
2) \(\int_0^{\frac{\Pi}{4}}\frac{sin\left(x-\frac{\Pi}{4}\right)}{sin2x+2\left(1+s\text{inx}+c\text{ox}\right)}dx\)
hộ mk vs nha
\(\int_0^{\dfrac{\pi}{2}}\dfrac{1}{\left(\sin x\right)^3+\left(cosx\right)^3}dx\)
Biết \(\int_{-1}^3f\left(x\right)dx=15\) . Tính giá trị của P = \(\int_0^2\left[f\left(3-2x\right)+2019\right]dx\)
1) \(\int ln^3xdx\)
2) \(\int_0^1\left(x+sin^2x\right)c\text{os}xdx\)
3)\(\int x\left(e^{2x}+\sqrt[3]{x+1}\right)dx\)
Tính (trình bày cách giải ln nka):
a) \(\int_{\dfrac{\pi}{6}}^{\dfrac{\pi}{3}}\dfrac{1}{cos^4x}dx\)
b) \(\int_0^1\dfrac{\left(x+1\right)^2}{x^2+1}dx\)
c)\(\int_1^2\dfrac{x^2+2lnx}{x}dx\)
d) \(\int_1^2\dfrac{x^2+3x+1}{x^2+x}dx\)
e) \(\int_0^33x\left(x+\sqrt{x^2+16}\right)dx\)