a: Xét ΔACD và ΔBDC có
AC=BD
CD chung
AD=BC
Do đó: ΔACD=ΔBDC
Suy ra: \(\widehat{ACD}=\widehat{BDC}\)
hay \(\widehat{IDC}=\widehat{ICD}\)
Xét ΔIDC có \(\widehat{IDC}=\widehat{ICD}\)
nên ΔIDC cân tại I
a: Xét ΔACD và ΔBDC có
AC=BD
CD chung
AD=BC
Do đó: ΔACD=ΔBDC
Suy ra: \(\widehat{ACD}=\widehat{BDC}\)
hay \(\widehat{IDC}=\widehat{ICD}\)
Xét ΔIDC có \(\widehat{IDC}=\widehat{ICD}\)
nên ΔIDC cân tại I
Bài : hình thang cân ABCD Có O là giao điểm 2 đường thẳng chưas cạnh trên AB, BC và E là giao điểm 2 đường chéo. chứng minh rằng OE là đường trung trực của 2 đáy Mn làm giúp em ạ nếu đc mn vẽ hộ em hình luôn ạ
ho hình chữ nhật ABCD có O là giao điểm hai đường chéo. Trên đoạn thẳng OB lấy điểm I, gọi E là điểm đối xứng với A qua I.
1. Chứng minh: Tứ giác OIEC là hình thang.
2. Gọi J là trung điểm của CE. Chứng minh: IJ = OC.
3. Đường thẳng IJ cắt BC tại F và cắt tia DC tại H. Chứng minh: tam giác JCH cân.
4. Tứ giác ABCD cần thêm điều kiện gì để tứ giác OIJC là hình chữ nhật.
Cho hình thang ABCD có hai đáy AB và CD (AB < CD) có AD = BC. Gọi E, F lần lượt là trung điểm của AD, BC. Qua E vẽ đường thẳng song song với CD, đường thẳng này cắt AC tại K.
a) Chứng minh K là trung điểm của AC
b) Chứng minh K thuộc đường thẳng EF.
c) Chứng minh rằng tứ giác ABCD là hình thang cân
Cho hình chữ nhật ABCD có O là giao điểm của hai đường chéo. Gọi M,N lần lượt là trung điểm của AO và BO.
1/ Cho AB = 8cm ; BC = 10cm.
a/ Tính diện tính hình chữ nhật ABCD.
b/ C/m DMNC là hình thang cân.
2/ Giả sử AC = 2AD. Gọi E là giao điểm của tia CN và tia DM. C/m tứ giác ADOE là hình thoi.
Cho hình thoi ABCD có O là giao điểm hai đường chéo AC và BD. Gọi I là trung điểm BC, E đối xứng với O qua I.
1.Chứng minh rằng: OE = DA
2.Chứng minh rằng: E đối xứng với A qua trung điểm J của đoạn OB
3.Chứng minh rằng: SABCD = 2SBOCE.
4.M đối xứng với I qua J. Chứng minh rằng: ba điểm A, M, B thẳng hàng.
5.Gọi K là giao điểm AI và BO. Chứng minh rằng: Ba điểm M, K, C thẳng hàng
Cho hình bình hành ABCD. Gọi o là giao điểm hai đường thẳng ac và bd. Qua điểm O vẽ đường thẳng song song với AB cắt hai cạnh AD, BC lần lượt tại M, N. Trên AB, CD lần lượt lấy các điểm P, Q sao cho AP = CQ. Chứng minh:
a) Các tứ giác AMNB, APCQ là hình bình hành
b) MP // NQ; MQ = NP
Cho tam giác ABC cân tại A, đường cao AH. Trên cạnh AB lấy điểm I, trên cạnh AC lấy điểm K sao cho AI=AK.
a)CMR: I đối xứng với K qua H.
b)CMR: BIKC là hình thang cân.
c) Gọi giao điểm của BK và IC là G. GH có phảI trục đối xứng của hình thang cân BIKC không? Tại sao?
Cho tam giác ABC cân tại A, đường cao AH. Trên cạnh AB lấy điểm I, trên cạnh AC lấy điểm K sao cho AI=AK.
a)CMR: I đối xứng với K qua H.
b)CMR: BIKC là hình thang cân.
c) Gọi giao điểm của BK và IC là G. GH có phảI trục đối xứng của hình thang cân BIKC không? Tại sao?