cho 3 số a,b,c là 3 cạnh của một tam giác thỏa mãn:
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{3}{2}\)
chứng minh tam giác abc đều
cho a,b,c là độ dài 3 cạnh của tam giác vuông có cạnh huyền c. tìm GTNN của \(P=\dfrac{a^2\left(b+c\right)+b^2\left(c+a\right)}{abc}\)
Cho a,b,c là độ dài ba cạnh của một tam giác .
CMR : \(\Sigma\dfrac{a}{\sqrt[3]{b^3+c^3}}< 2\sqrt[3]{4}\)
Cho tam giác ABC có ^C=2^A+^B và ^B>^A
a) Chứng minh: \(AB^2=BC^2+AB\cdot AC\)
b) Tìm độ dài ba cạnh của tam giác ABC trong trường hợp độ dài ba cạnh là ba số chẵn liên tiếp.
a) cho x,y,z là các số thực dương. . Chứng minh rằng: \(\sqrt{\left(x+y\right)\left(x+z\right)}\ge x+\sqrt{yz}\)
b) cho a,b,c là số đo ba cạnh của tam giác. Chứng minh rằng:
\(\frac{\sqrt{a}}{b+c-a}+\frac{\sqrt{b}}{c+a-b}+\frac{\sqrt{c}}{a+b-c}\ge\frac{a+b+c}{\sqrt{abc}}\)
Bài 1: Cho a > 0, b > 0. Chứng minh rằng:
a/√b + b/√a >= √a + √b
Bài 2: Cho a, b, c là các đô dài của các cạnh tam giác và p là nửa chu vi. Chứng minh rằng:
(p - a)(p - b) <= c^2/4
Bài 3:Chứng minh rằng với mọi số thực a ta có:3(a^4+a^2+1)>=(a^2+a+1)^2
Bài 4:Cho 3 số thực dương a,b,c.chứng minh rằng:(1+a/b)(1+b/c)(1+c/a)>=8
Bài 5:Cho a,b là hai số dương. Chứng minh:a^2+b^2+1/a++1/b>=2(√a+√b)
Bài 6:Cho ba số dương a,b,c. Chứng minh rằng:ab/(a+b)+bc/(b+c)+ca/(c+a)<=(a+b+c)/2
Bài 7:Cho ba số thực dương a,b,c thỏa mãn:ab+bc+ca=3. Chứng minh rằng:
a^3/(b^2+3)+b^3/(c^2+3)+c^3/(a^2+3)>=3/4
bài 8:Tìm giá trị nhỏ nhất của hàm số f(x)=x+3/(x-2) với x>2
Cho tam giác ABC có độ dài ba cạnh là a, b, c. Chứng minh rằng :
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< 2\)
Cho a,b,c là ba số hữu tỉ thỏa mãn abc=1 và \(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}=\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\)
Chứng minh rằng ít nhất một trong ba số a,b,c là bình phương của một số hữu tỉ
Cho a, b, c là độ dài ba cạnh của tam giác. Chứng minh rằng: \(\frac{1}{a+b};\frac{1}{a+c};\frac{1}{b+c}\) là độ dài ba cạnh của một tam giác.