Không mất tính tổng quát, giả sử \(a\ge b\ge c\)
\(\Rightarrow a+b\ge a+c\ge b+c\Rightarrow\frac{1}{b+c}\ge\frac{1}{a+c}\ge\frac{1}{a+b}\)
Do a;b;c là độ dài 3 cạnh của 1 tam giác nên \(b+c>a\)
Để bộ ba \(\frac{1}{a+b};\frac{1}{b+c};\frac{1}{a+c}\) là độ dài 3 cạnh của 1 tam giác thì ta chỉ cần chứng minh rằng \(\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c}\)
Thật vậy, ta có: \(\frac{1}{a+b}+\frac{1}{a+c}\ge\frac{4}{2a+b+c}>\frac{4}{2\left(b+c\right)+b+c}=\frac{4}{3\left(b+c\right)}>\frac{1}{b+c}\) (đpcm)