cho a,b,c là độ dài 3 cạnh của tam giác vuông có cạnh huyền c. tìm GTNN của \(P=\dfrac{a^2\left(b+c\right)+b^2\left(c+a\right)}{abc}\)
Cho tam giác ABC với độ dài ba cạnh là a,b, c tương ứng với ba đỉnh A; B; C và R là bán kính của đường tròn ngoại tiếp tam giác. Chứng minh rằng:\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge\frac{1}{R^2}\)
Cho a,b,c là độ dài ba cạnh của một tam giác .
CMR : \(\Sigma\dfrac{a}{\sqrt[3]{b^3+c^3}}< 2\sqrt[3]{4}\)
Cho a, b, c là độ dài ba cạnh thỏa mãn điều kiện : \(a+b+c=\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\). Chứng minh tam giác ABC đều
1. Cho ∆ABC biết BC = 7.5cm, AC = 4.5cm, AB = 6cm.
a) ∆ABC là tam giác gì? Tính đường cao AH của ∆ABC.
b) Tính độ dài các cạnh BH, HC.
2. Cho ∆ABC vuông tại A, AB = 12cm, AC = 16cm, phân giác AD, đường cao AH. Tính HD, HB, HC.
đường tròn tâm (I) nội tiếp tam giác ABC , (I) cắt AB tại F cắt Bc tại D và cắt AC tại E . Ad cắt (I) tại M . AI cắt EF tại K . chứng minh \(\dfrac{IA^2}{AB\cdot AC}+\dfrac{IB^2}{BC\cdot BA}+\dfrac{IC^2}{CA\cdot CB}=1\)
cho tam giác ABC có chu vi là 2P.Các đường tròn bàng tiếp trong góc A,B,C tiếp cúc với các cạnh BC,CA,AB theo thứ tự A1,B1,C1 .Đường tròn bàng tiếp của tam giác tiếp xúc với BC tại m
a) chứng minh CM=P
b) chứng minh rằng nếu AA1=BB1=CC1 thì tam giác ABC đều
Cho tam giác ABC vuông tại A, có đường cao AH (H thuộc BC). Biết độ dài đoạn AC bằng 5cm, đoạn HC bằng 4cm. Tính độ dài các cạnh AB và BC.
cho tam giác ABC có \(\widehat{A}=60^o\) và độ dài ba cạnh BC=a; CA=b; AB=c là ba số nguyên khác nhau.
a) chứng minh \(a^2=b^2+c^2-bc\)
b) giả sử b<c thì \(b\ge3\)