\(a+b+c=\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)
\(\Rightarrow2a+2b+2c=2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ac}\)
\(\Rightarrow2a+2b+2c-2\sqrt{ab}-2\sqrt{bc}-2\sqrt{ac}=0\)
\(\Rightarrow\left(a+b-2\sqrt{ab}\right)+\left(b+c-2\sqrt{bc}\right)+\left(c+a-2\sqrt{ac}\right)=0\)
\(\Rightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2=0\)
Được biết: \(\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\)
Dấu "=" xảy ra khi: \(\sqrt{a}=\sqrt{b}=\sqrt{c}\Leftrightarrow a=b=c\)
Hay \(\Delta ABC\) đều