Bài 2: Hàm số lũy thừa

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kiều Thảo

giúp mk câu 37 nữa Bài tập Toán

Akai Haruma
17 tháng 10 2017 lúc 1:16

Lời giải:
Đặt \(\sqrt[3]{9+\sqrt{80}}=a;\sqrt[3]{9-\sqrt{80}}=b\), hiển nhiên \(a,b>0\)

Ta thấy

\(\bullet ab=\sqrt[3]{(9+\sqrt{80})(9-\sqrt{80})}=\sqrt[3]{81-80}=1\) (1)

\(\bullet a^3+b^3=18\Leftrightarrow (a+b)^3-3ab(a+b)=18\)

\(\Leftrightarrow (a+b)^3-3(a+b)=18\)

\(\Leftrightarrow (a+b-3)[(a+b)^2+3(a+b)+6]=0\)

Vế trong ngoặc vuông hiển nhiên lớn hơn 0 nên \(a+b-3=0\Leftrightarrow a+b=3\) (2)

Từ (1),(2) , áp dụng định lý Viete đảo ta suy ra $a,b$ là nghiệm của pt \(x^2-3x+1=0\), suy ra \(a^2-3a+1=0\Rightarrow 3a-a^2=1\)

Biểu thức: \(P=a^{2017}(3-a)^{2018}=[3a-a^2]^{2017}(3-a)=1^{2017}(3-a)\)

\(=3-a=3-\sqrt[3]{9+\sqrt{80}}\)

Đáp án B

P/s: Có 1 cách khác, vì số mũ quá lớn mà có giá trị đẹp, nên ta thấy thông thường bài toán kiểu này số mũ mang ý nghĩa tượng trưng thôi, nên giá trị của biểu thức nó cũng đúng với trường hợp mũ 1;2. Do đó \(P=(\sqrt[3]{9+\sqrt{80}})(3-\sqrt[3]{9+\sqrt{80}})^2\), giá trị này dễ dàng tính được bằng mtct =)))


Các câu hỏi tương tự
Ngọt Bánh
Xem chi tiết
Kiều Thảo
Xem chi tiết
Huỳnh Văn Thiện
Xem chi tiết
incinc18
Xem chi tiết
hai anh nguyen tran
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Trần Phan Ngọc Hân
Xem chi tiết