Lời giải:
Đặt \(\sqrt[3]{9+\sqrt{80}}=a;\sqrt[3]{9-\sqrt{80}}=b\), hiển nhiên \(a,b>0\)
Ta thấy
\(\bullet ab=\sqrt[3]{(9+\sqrt{80})(9-\sqrt{80})}=\sqrt[3]{81-80}=1\) (1)
\(\bullet a^3+b^3=18\Leftrightarrow (a+b)^3-3ab(a+b)=18\)
\(\Leftrightarrow (a+b)^3-3(a+b)=18\)
\(\Leftrightarrow (a+b-3)[(a+b)^2+3(a+b)+6]=0\)
Vế trong ngoặc vuông hiển nhiên lớn hơn 0 nên \(a+b-3=0\Leftrightarrow a+b=3\) (2)
Từ (1),(2) , áp dụng định lý Viete đảo ta suy ra $a,b$ là nghiệm của pt \(x^2-3x+1=0\), suy ra \(a^2-3a+1=0\Rightarrow 3a-a^2=1\)
Biểu thức: \(P=a^{2017}(3-a)^{2018}=[3a-a^2]^{2017}(3-a)=1^{2017}(3-a)\)
\(=3-a=3-\sqrt[3]{9+\sqrt{80}}\)
Đáp án B
P/s: Có 1 cách khác, vì số mũ quá lớn mà có giá trị đẹp, nên ta thấy thông thường bài toán kiểu này số mũ mang ý nghĩa tượng trưng thôi, nên giá trị của biểu thức nó cũng đúng với trường hợp mũ 1;2. Do đó \(P=(\sqrt[3]{9+\sqrt{80}})(3-\sqrt[3]{9+\sqrt{80}})^2\), giá trị này dễ dàng tính được bằng mtct =)))