Bài 2: Hàm số lũy thừa

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Huỳnh Văn Thiện

Rút gọn biểu thức A=\(\dfrac{a^{\dfrac{1}{3}}-a^{\dfrac{7}{3}}}{a^{\dfrac{1}{3}}-a^{\dfrac{4}{3}}}-\dfrac{a^{\dfrac{1}{3}}-a^{\dfrac{5}{3}}}{a^{\dfrac{2}{3}}+a^{\dfrac{1}{3}}}\) ?

Akai Haruma
5 tháng 1 2018 lúc 13:31

Lời giải:

Ta có \(A=\frac{a^{\frac{1}{3}}-a^{\frac{7}{3}}}{a^{\frac{1}{3}}-a^{\frac{4}{3}}}-\frac{a^{\frac{1}{3}}-a^{\frac{5}{3}}}{a^{\frac{2}{3}}+a^{\frac{1}{3}}}\)

\(=\frac{\sqrt[3]{a}-\sqrt[3]{a^7}}{\sqrt[3]{a}-\sqrt[3]{a^4}}-\frac{\sqrt[3]{a}-\sqrt[3]{a^5}}{\sqrt[3]{a^2}+\sqrt[3]{a}}\)

\(=\frac{\sqrt[3]{a}(1-a^2)}{\sqrt[3]{a}(1-a)}-\frac{\sqrt[3]{a}(1-\sqrt[3]{a^4})}{\sqrt[3]{a}(1+\sqrt[3]{a})}=\frac{1-a^2}{1-a}-\frac{1-\sqrt[3]{a^4}}{1+\sqrt[3]{a}}\)

\(=1+a-\frac{1-\sqrt[3]{a^4}}{1+\sqrt[3]{a}}\)

Đặt \(\sqrt[3]{a}=t\Rightarrow A=1+t^3-\frac{1-t^4}{1+t}=1+t^3-\frac{(1-t^2)(1+t^2)}{1+t}\)

\(=1+t^3-\frac{(1-t)(1+t)(1+t^2)}{1+t}=1+t^3-(1-t)(1+t^2)\)

\(=2t^3-t^2+t\)


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Nguyễn Hồng Phúc
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Ngọc Linh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết