a: Ta có: \(\left(x+3\right)\left(x-3\right)-\left(x-2\right)\left(x+5\right)=6\)
\(\Leftrightarrow x^2-9-x^2-3x+10=6\)
\(\Leftrightarrow-3x=5\)
hay \(x=-\dfrac{5}{3}\)
c: \(4x^2-9=0\)
\(\Leftrightarrow\left(2x-3\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
\(a,\Leftrightarrow x^2-9-x^2-3x+10=6\\ \Leftrightarrow-3x=5\Leftrightarrow x=-\dfrac{5}{3}\\ b,\Leftrightarrow2x^2+3x^2-3=5x^2+5x\\ \Leftrightarrow5x=-3\Leftrightarrow x=-\dfrac{3}{5}\\ c,\Leftrightarrow\left(2x-3\right)\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\\ d,\Leftrightarrow\left(5-2x\right)^2-4=0\\ \Leftrightarrow\left(5-2x-2\right)\left(5-2x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{7}{2}\end{matrix}\right.\\ e,\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)
\(f,\Leftrightarrow\left(2x+9\right)\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{9}{2}\end{matrix}\right.\\ g,\Leftrightarrow\left(x^2-4\right)\left(3x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\\x=\dfrac{4}{3}\end{matrix}\right.\\ h,\Leftrightarrow\left(x+1\right)\left(x^4+x^2+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x^4+2x^2+1-x^2\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(vô.lí\right)\\\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(vô.lí\right)\end{matrix}\right.\Leftrightarrow x=-1\)