20:
a: 5JB=2JC
=>JB/2=JC/5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{JC}{5}=\dfrac{JB}{2}=\dfrac{JC-JB}{5-2}=\dfrac{BC}{3}\)
=>JC=5/3*BC; JB=2/3BC
2CI=3BI
=>CI/3=BI/2=(CI+BI)/(3+2)=CB/5
=>CI=3/5CB; BI=2/5CB
\(\overrightarrow{AI}=\overrightarrow{AB}+\overrightarrow{BI}\)
=\(\overrightarrow{AB}+\dfrac{2}{5}\overrightarrow{BC}\)
\(=\overrightarrow{AB}+\dfrac{2}{5}\overrightarrow{BA}+\dfrac{2}{5}\overrightarrow{AC}=\dfrac{3}{5}\overrightarrow{AB}+\dfrac{2}{5}\overrightarrow{AC}\)
\(\overrightarrow{AJ}=\overrightarrow{AB}+\overrightarrow{BJ}\)
\(=\overrightarrow{AB}-\dfrac{2}{3}\overrightarrow{BC}\)
\(=\overrightarrow{AB}-\dfrac{2}{3}\overrightarrow{BA}-\dfrac{2}{3}\overrightarrow{AC}\)
\(=\dfrac{5}{3}\overrightarrow{AB}-\dfrac{2}{3}\overrightarrow{AC}\)
b: Gọi giao của AG với BC là M
=>M là trung điểm của BC
Xét ΔABC có
G là trọng tâm
AM là đường trung tuyến
=>\(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}=\dfrac{2}{3}\cdot\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)
Đặt \(\overrightarrow{AG}=x\cdot\overrightarrow{AI}+y\cdot\overrightarrow{AJ}\)
=>\(\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}=\dfrac{3}{5}\cdot x\cdot\overrightarrow{AB}+\dfrac{2}{5}\cdot x\cdot\overrightarrow{AC}+\dfrac{5}{3}\cdot y\cdot\overrightarrow{AB}-\dfrac{2}{3}\cdot y\cdot\overrightarrow{AC}\)
Đồng nhất hệ số, ta được hệ phương trình:
3/5x+5/3y=1/3 và 2/5x-2/3y=1/3
=>x=35/48 và y=-1/16
=>\(\overrightarrow{AG}=\dfrac{35}{48}\overrightarrow{AI}-\dfrac{1}{16}\overrightarrow{AJ}\)