Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
:vvv

Giải pt:

\(x^2+2x\sqrt{x+\dfrac{1}{x}}=8x-1\)

An Thy
21 tháng 6 2021 lúc 17:25

\(x^2+2x\sqrt{x+\dfrac{1}{x}}=8x-1\left(x\ne0\right)\)

Vì \(VT\ge0\Rightarrow VP\ge0\Rightarrow x\ge\dfrac{1}{8}\)

Vì \(x\ne0\Rightarrow\) chia 2 vế cho x,ta được:

\(x+2\sqrt{x+\dfrac{1}{x}}=8-\dfrac{1}{x}\Rightarrow x+\dfrac{1}{x}+2\sqrt{x+\dfrac{1}{x}}=8\)

Đặt \(\sqrt{x+\dfrac{1}{x}}=a\left(a>0\right)\)

pt trở thành \(a^2+2a-8=0\Rightarrow a^2-2a+4a-8=0\)

\(\Rightarrow a\left(a-2\right)+4\left(a-2\right)=0\Rightarrow\left(a-2\right)\left(a+4\right)=0\)

mà \(a>0\Rightarrow a=2\Rightarrow\sqrt{x+\dfrac{1}{x}}=2\Rightarrow x+\dfrac{1}{x}=4\)

\(\Rightarrow\dfrac{x^2-4x+1}{x}=0\Rightarrow x^2-4x+1=0\)

\(\Delta=\left(-4\right)^2-4=12\Rightarrow\left[{}\begin{matrix}x=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{4-\sqrt{12}}{2}=2-\sqrt{3}\\x-\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{4+\sqrt{12}}{2}=2+\sqrt{3}\end{matrix}\right.\)

Vậy pt có tập nghiệm \(S=\left\{2-\sqrt{3};2+\sqrt{3}\right\}\)

 


Các câu hỏi tương tự
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyen Quynh Huong
Xem chi tiết
Mai Tiến Đỗ
Xem chi tiết
Phạm Băng Băng
Xem chi tiết
Hày Cưi
Xem chi tiết
nguyen ngoc son
Xem chi tiết
:vvv
Xem chi tiết
huy Le
Xem chi tiết