\(\sqrt[4]{x}=\dfrac{3}{8}+2x\)
<=> \(x=\left(\dfrac{3}{8}+2x\right)^4\)
<=> \(x=\left[\left(\dfrac{3}{8}+2x\right)^2\right]^2\)
<=> \(x=\left(\dfrac{9}{64}+\dfrac{3}{2}x+4x^2\right)^2\)
<=> \(x=\dfrac{1}{16}\)
\(\sqrt[4]{x}=\dfrac{3}{8}+2x\)
<=> \(x=\left(\dfrac{3}{8}+2x\right)^4\)
<=> \(x=\left[\left(\dfrac{3}{8}+2x\right)^2\right]^2\)
<=> \(x=\left(\dfrac{9}{64}+\dfrac{3}{2}x+4x^2\right)^2\)
<=> \(x=\dfrac{1}{16}\)
Giải PT sau: \(\sqrt[4]{x}=\dfrac{3}{8}+2x\)
giải pt :
a) \(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{x^4-1}\)
b0 \(4\sqrt{x+1}=x^2-5x+14\)
c) \(2x+3\sqrt{4-5x}+\sqrt{x+2}=8\)
d) \(\dfrac{x^2+x}{\sqrt{x^2+x+1}}=\dfrac{2-x}{\sqrt{x-1}}\)
Giải pt:
\(\dfrac{6x^2+4x+8}{x+1}=5\sqrt{2x^2+3}\)
Giải pt
a )\(\sqrt{\dfrac{x-1}{4}}-3=\sqrt{\dfrac{4x-4}{9}}\)
b) \(\sqrt{x^2-4x+4}+\sqrt{x^2+6x+9}=x-3\)
c) \(\sqrt{\dfrac{2x-3}{x-1}}=2\)
Giải pt
\(\sqrt{2x^2+6x-8}+\sqrt{2x^2+4x-6}-3\sqrt{x+4}=3\sqrt{x+3}+1\)
Giải pt: 2x +\(\sqrt{x+\sqrt{x-\dfrac{1}{4}}}=2\)
Giải hệ pt:
\(\left\{{}\begin{matrix}x^3+y^3+3xy=1\\\sqrt{\left(4-x\right)\left(13-y\right)}=\dfrac{2x+2y+25}{2x+y+2}\end{matrix}\right.\)
Giải pt:
\(\sqrt{x+1+\sqrt{x+\dfrac{3}{4}}}+x=\dfrac{1}{2}\)
Giải phương trình:
1. \(\sqrt{2x^2+4x+7}=x^4+4x^3+3x^2-2x-7\)
2. \(\dfrac{4}{x}+\sqrt{x-\dfrac{1}{x}}=x+\sqrt{2x-\dfrac{5}{x}}\)
3. \(\dfrac{6-2x}{\sqrt{5-x}}+\dfrac{6+2x}{\sqrt{5+x}}=\dfrac{8}{3}\)
4. \(x^2+1-\left(x+1\right)\sqrt{x^2-2x+3}=0\)
5. \(2\sqrt{2x+4}+4\sqrt{2-x}=\sqrt{9x^2+16}\)
6. \(\left(2x+7\right)\sqrt{2x+7}=x^2+9x+7\)