Lời giải:
ĐKXĐ: \(x\leq \frac{2}{3}\)
Ta có: \(\sqrt{2-3x}=-3x^2+7x-1\)
\(\Leftrightarrow 3x^2-7x+1+\sqrt{2-3x}=0\)
\(\Leftrightarrow x(3x-1)-2(3x-1)+\sqrt{2-3x}-1=0\)
\(\Leftrightarrow x(3x-1)-2(3x-1)+\frac{2-3x-1}{\sqrt{2-3x}+1}=0\)
\(\Leftrightarrow (3x-1)\left(x-2-\frac{1}{\sqrt{2-3x}+1}\right)=0\)
Vì \(x\leq \frac{2}{3}; \frac{1}{\sqrt{2-3x}+1}>0\Rightarrow x-2-\frac{1}{\sqrt{2-3x}+1}< \frac{2}{3}-2-0<0\)
Tức là \(x-2-\frac{1}{\sqrt{2-3x}+1}\neq 0\Rightarrow 3x-1=0\Rightarrow x=\frac{1}{3}\) (t/m)
Vậy...........