Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Băng Băng

Giai pt:

a. \(\sqrt{x-1}-\sqrt{5x-1}=\sqrt{3x-2}\)

b. \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2\)

Nguyễn Việt Lâm
5 tháng 11 2019 lúc 7:20

a/ ĐKXĐ: \(x\ge1\)

\(\sqrt{x-1}=\sqrt{5x-1}+\sqrt{3x-2}\)

\(\Leftrightarrow x-1=8x-3+2\sqrt{\left(5x-1\right)\left(3x-2\right)}\)

\(\Leftrightarrow2-7x=2\sqrt{\left(5x-1\right)\left(3x-2\right)}\)

Do \(x\ge1\Rightarrow2-7x< 0\Rightarrow\left\{{}\begin{matrix}VP\ge0\\VT< 0\end{matrix}\right.\)

Phương trình vô nghiệm

b/ ĐKXĐ: \(x\ge1\)

\(\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)

\(\Leftrightarrow\left|\sqrt{x-1}+1\right|+\left|1-\sqrt{x-1}\right|=2\)

\(\left|\sqrt{x-1}+1\right|+\left|1-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}+1+1-\sqrt{x-1}\right|=2\)

Dấu "=" xảy ra khi và chỉ khi \(1-\sqrt{x-1}\ge0\Rightarrow x\le2\Rightarrow1\le x\le2\)

Vậy nghiệm của pt là \(1\le x\le2\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Rồng Xanh
Xem chi tiết
GG boylee
Xem chi tiết
Mai Tiến Đỗ
Xem chi tiết
bach nhac lam
Xem chi tiết
Đinh Doãn Nam
Xem chi tiết
Angela jolie
Xem chi tiết
Lê Ánh ethuachenyu
Xem chi tiết
bach nhac lam
Xem chi tiết
bach nhac lam
Xem chi tiết