Lời giải:
ĐK: \(x\geq -1\)
Ta có: \(\sqrt{x+1}+\sqrt{x+9}=4\)
\(\Leftrightarrow (\sqrt{x+1}-1)+(\sqrt{x+9}-3)=0\)
\(\Leftrightarrow \frac{(x+1)-1}{\sqrt{x+1}+1}+\frac{(x+9)-3^2}{\sqrt{x+9}+3}=0\)
\(\Leftrightarrow \frac{x}{\sqrt{x+1}+1}+\frac{x}{\sqrt{x+9}+3}=0\)
\(\Leftrightarrow x\left( \frac{1}{\sqrt{x+1}+1}+\frac{1}{\sqrt{x+9}+3}\right)=0\)
Dễ thấy biểu thức trong ngoặc lớn luôn lớn hơn $0$
Do đó: \(x=0\) là nghiệm duy nhất của pt