Lời giải:
PT \(\Leftrightarrow 2x^2+x(3-5y)+(3y^2-2y-3)=0(*)\)
Coi đây là pt bậc $2$ ẩn $x$. Để pt có nghiệm nguyên thì:
\(\Delta=(3-5y)^2-8(3y^2-2y-3)=t^2\) (\(t\in\mathbb{N}\) )
\(\Leftrightarrow y^2-14y+33=t^2\)
\(\Leftrightarrow (y-7)^2-16=t^2\)
\(\Leftrightarrow 16=(y-7-t)(y-7+t)\)
Lập bảng xét TH (nhớ rằng $y-7-t$ và $y-7+t$ có cùng tính chẵn lẻ và \(y-7-t\leq y-7+t\) với mọi $t\in\mathbb{N}$
để giảm bớt TH cần phải xét)
Khi đó, ta dễ dàng tìm được: \(y\in\left\{2;3;11;12\right\}\)
Thay từng giá trị của $y$ ở trên vào PT $(*)$ ta tìm được $x$:
\(y=2\Rightarrow x=1\)
\(y=3\Rightarrow x=3\)
\(y=11\Rightarrow x=13\)
\(y=12\Rightarrow x=15\)