Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
 nguyễn hà

Giải pt: \(\left(\frac{x+3}{x-2}\right)^2+6\left(\frac{x-3}{x+2}\right)^2=\frac{7\left(x^2-9\right)}{x^2-4}\)

Nguyễn Việt Lâm
3 tháng 4 2019 lúc 22:30

\(x\ne\pm2\)

Đặt \(\left\{{}\begin{matrix}\frac{x+3}{x-2}=a\\\frac{x-3}{x+2}=b\end{matrix}\right.\) phương trình trở thành:

\(a^2+6b^2=7ab\)

\(\Leftrightarrow a^2-7ab+6b^2=0\)

\(\Leftrightarrow a^2-ab-6ab+6b^2=0\)

\(\Leftrightarrow a\left(a-b\right)-6b\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-6b\right)\left(a-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=6b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\frac{x+3}{x-2}=\frac{x-3}{x+2}\\\frac{x+3}{x-2}=\frac{6\left(x-3\right)}{x+2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x+3\right)\left(x+2\right)=\left(x-3\right)\left(x-2\right)\\\left(x+3\right)\left(x+2\right)=6\left(x-3\right)\left(x-2\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=-5x\\x^2-7x+6=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=6\end{matrix}\right.\)


Các câu hỏi tương tự
Lê Vũ Anh Thư
Xem chi tiết
Kaijo
Xem chi tiết
Huy Hoàng Cao
Xem chi tiết
Min
Xem chi tiết
Tùng Sói
Xem chi tiết
Minecraftboy01
Xem chi tiết
Huyền Trang
Xem chi tiết
nguyễn hoài thu
Xem chi tiết
Trí Phạm
Xem chi tiết