a/ (1−\(\sqrt{2}\))x2 −2(1+\(\sqrt{2}\))x+1+3\(\sqrt{2}\)=0
⇔ (1−\(\sqrt{2}\)) (x2 - 2x +3) = 0 (Đặt nhân tử chung)
⇔ 1- \(\sqrt{2}\) = 0 và x2 -2x +3 = 0
b) nhân 6 với \(\sqrt{2}\)+1 là ra phương trình bậc 2
a/ (1−\(\sqrt{2}\))x2 −2(1+\(\sqrt{2}\))x+1+3\(\sqrt{2}\)=0
⇔ (1−\(\sqrt{2}\)) (x2 - 2x +3) = 0 (Đặt nhân tử chung)
⇔ 1- \(\sqrt{2}\) = 0 và x2 -2x +3 = 0
b) nhân 6 với \(\sqrt{2}\)+1 là ra phương trình bậc 2
Bài 1. Giải các phương trình :
1. \(x^2-\left(1+\sqrt{2}\right)x+\sqrt{2}=0\)
2.\(\left(1+\sqrt{2}\right)x^2-x-\sqrt{2}=0\)
3. \(\left(1-\sqrt{2}\right)x^2-2\sqrt{2}x+\sqrt{3}=0\)
Bài 2. Tìm m để các phương trình sau có nghiệm:
1. \(mx^2-2\left(m+1\right)x+m+3=0\)
2. \(\left(m-1\right)x^2-4\left(m+1\right)x+4m+3=0\)
Bài 3. Tìm m để các phương trình sau vô nghiệm
1. \(3x^2-2x+m=0\)
2. \(mx^2-4mx+4m-1=0\)
Xác định các hệ số a, b, c rồi giải phương trình :
a) \(2x^2-2\sqrt{2}x+1=0\)
b) \(2x^2-\left(1-2\sqrt{2}\right)x-\sqrt{2}=0\)
c) \(\dfrac{1}{3}x^2-2x-\dfrac{2}{3}=0\)
d) \(3x^2+7,9x+3,36=0\)
Giải phương trình sau
\(x^2-\left(\sqrt{2}+\sqrt{3}\right)x+\sqrt{6}-3\sqrt{2}+3\sqrt{3}-9=0\)
Bài 1: Giải toán bằng cách lập PT:
Một thửa đất hình thang có đáy lớn gấp 3 lần đáy nhỏ. Biết khoảng cách giữa 2 đáy là 17m và diện tích bằng \(408m^2\) . Tính độ dài đáy lớn và đáy bé của thửa đất
Bài 2: Giải HPT sau:
\(\left\{{}\begin{matrix}x+2y=\sqrt{3}\\3x+4y=1\end{matrix}\right.\)
Bài 3: RGBT sau:
\(C=\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{x+\sqrt{x}}\right)\)
Bài 4: Cho pt: \(2x^2-4x+m-3=0\) (1) (m là tham số)
a. Tìm các giá trị của m để pt (1) có 2 nghiệm \(x_1x_2\) phân biệt
b. Tìm các giá trị của m để hai nghiệm \(x_1x_2\) t/m điều kiện \(\left(x_1+x_2\right)^2-x_1\cdot x_2=3\)
Help meeeeeeeee!!!!!!!!!!
1) Cho PT: \(x^2+mx+n=0\left(1\right)\) với m,n thuộc Z
a) CMR: Nếu PT(1) có nghiệm hữu tỉ thì nghiệm đó nguyên
b) Tìm nghiệm hữu tỉ của PT (1) nếu n=3
2) CMR: Nếu số \(\overline{abc}\) nguyên tố thì PT: \(ax^2+bx+c=0\) không có nghiệm hữu tỉ
3)Tìm m thuộc Z để nghiệm của PT \(mx^2-2\left(m-1\right)x+m-4=0\)là số hữu tỉ
4) Tìm nghiệm x, y thuộc Q, x> y thỏa mãn
\(\sqrt{x}-\sqrt{y}=\sqrt{2-\sqrt{3}}\)
B=\(\left(\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x}-1}\right)\left(\frac{\sqrt{x}-1}{\sqrt{x}}\right)\) tìm x \(\in N\) để B\(\ge\frac{1}{2}\)
Vì sao khi phương trình \(ax^2+bx+c=0\) có các hệ số a và c trái dấu thì nó có nghiệm ?
Áp dụng : Không tính \(\Delta\), hãy giải thích vì sao mỗi phương trình sau có nghiệm :
a) \(3x^2-x-8=0\)
b) \(2004x^2+2x-1185\sqrt{5}=0\)
c) \(3\sqrt{2}x^2+\left(\sqrt{3}-\sqrt{2}\right)x+\sqrt{2}-\sqrt{3}=0\)
d) \(2010x^2+5x-m^2=0\)
Tìm nghiệm nguyên cuả phương trình : \(\sqrt{x-2008}-2\sqrt{y-2009}+\sqrt{z-2010}+3012=\dfrac{1}{2}\left(x+y+z\right)\)
Tìm m để các pt sau có nghiệm
5, \(x^2-2mx+m+6=0\)
6, \(2x^2-2\left(m-1\right)x+m-1=0\)
7, \(mx^2-\left(m+1\right)x+3m-2=0\)
8, \(\left(m-1\right)x^2-\left(m+2\right)x+3m-2=0\)