ĐKXĐ: \(x\ge2\).
Với \(x\ge2\) ta có \(VP\le2;VT\ge2\).
Do đó nghiệm của pt là \(x=2\).
ĐKXĐ: \(x\ge2\).
Với \(x\ge2\) ta có \(VP\le2;VT\ge2\).
Do đó nghiệm của pt là \(x=2\).
Giải bất phương trình: \(\sqrt[4]{\left(x-2\right).\left(4-x\right)}+\sqrt[4]{x-2}+\sqrt[4]{4-x}+6x\sqrt{3x}\le x^3+30\)
Giải phương trình:
\(\sqrt{4-x^2}+6=2\sqrt{2+x}+3\sqrt{2-x}\\ \left(\sqrt{2-x}+1\right)^2=3x+1\)
giải bất phương trình \(\left(\sqrt{13}-\sqrt{2x^2-2x+5}-\sqrt{2x^2-4x+4}\right)\left(x^6-x^3+x^2-x+1\right)\ge0\)
Giải phương trình: \(\sqrt{x^2+x+19}+\sqrt{7x^2-2x+4}+\sqrt{13x^2+19x+7}=\sqrt{3}.\left(x+5\right)\)
giải phương trình: \(x^2+\left(3-x\right)\sqrt{2x-1}=x\left(3\sqrt{2x^2-5x+2}-\sqrt{x-2}\right)\)
Giải phương trình:
\(11\sqrt{5-x}+8\sqrt{2x-1}=24+3\sqrt{\left(5-x\right)\left(2x-1\right)}\)
\(\sqrt{x+3}+2\sqrt{x}=2+\sqrt{x\left(x+3\right)}\)
Giải phương trình: \(2.\left(x-\sqrt{2x^2+5x-3}\right)=1+x.\left(\sqrt{2x-1}-2\sqrt{x+3}\right)\)
Giải các phương trình sau: \(\left(\sqrt{x+5}-\sqrt{x+2}\right).\left(4+\sqrt{x^2+7x+10}\right)=6\)
giải hệ phương trình
\(\left\{{}\begin{matrix}\sqrt{x-2}+\sqrt{y-3}=3\\2\sqrt{x-2}-3\sqrt{y-3}=-4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{3x}{x+1}+\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5}{y+4}=4\end{matrix}\right.\)