Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyen ha giang

Giải phương trình: \((x-5)^4+(x-2)^4=17\)

Akai Haruma
30 tháng 6 2019 lúc 16:49

Lời giải:

Đặt \(x-\frac{7}{2}=a\). Khi đó PT trở thành:

\((a-\frac{3}{2})^4+(a+\frac{3}{2})^4=17\)

\(\Leftrightarrow 2a^4+27a^2+\frac{81}{8}=17\)

\(\Leftrightarrow 2a^4+27a^2=\frac{55}{8}\)

\(\Leftrightarrow a^4+\frac{27}{2}a^2=\frac{55}{16}\)

\(\Leftrightarrow (a^2+\frac{27}{4})^2=49\)

\(\Rightarrow \left[\begin{matrix} a^2+\frac{27}{4}=7\\ a^2+\frac{27}{4}=-7< 0(\text{vô lý})\end{matrix}\right.\)

\(\Rightarrow a^2=\frac{1}{4}\Rightarrow a=\pm \frac{1}{2}\)

\(\Rightarrow x=a+\frac{7}{2}=\left[\begin{matrix} 4\\ 3\end{matrix}\right.\)


Các câu hỏi tương tự
nguyen ha giang
Xem chi tiết
nguyen ha giang
Xem chi tiết
nguyen ha giang
Xem chi tiết
nguyen ha giang
Xem chi tiết
nguyen ha giang
Xem chi tiết
nguyen ha giang
Xem chi tiết
nguyen ha giang
Xem chi tiết
nguyen ha giang
Xem chi tiết
nguyen ha giang
Xem chi tiết