ĐK : \(x\ge1\)
\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}=0}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=0\)
\(\Leftrightarrow\left|\sqrt{x-1}+1\right|+\left|\sqrt{x-1}-1\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-1}+1=0\\\sqrt{x-1}-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-1}=-1\left(VL\right)\\\sqrt{x-1}=1\end{matrix}\right.\)
\(\Rightarrow x-1=1\Leftrightarrow x=2\)
Với x = 2 thay vào PT không thỏa mãn
=> PTVN