\(y^2+4^x+2y-2^{x+1}+2=0\)
\(\Leftrightarrow\left(y+1\right)^2+\left(2^x-1\right)^2=0\) ( * )
Do \(\left(y+1\right)^2\ge0\forall y;\left(2^x-1\right)^2\ge0\forall x\Rightarrow\left(y+1\right)^2+\left(2^x-1\right)^2\ge0\forall x;y\)
Từ ( * ) \(\Rightarrow\left\{{}\begin{matrix}\left(y+1\right)^2=0\\\left(2^x-1\right)^2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y+1=0\\2^x-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=-1\\x=0\end{matrix}\right.\)
Vậy ....
\(y^2+2y+1+\left(2^x\right)^2-2.2^x+1=0\)
\(\Leftrightarrow\left(y+1\right)^2+\left(2^x-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}y+1=0\\2^x-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=-1\\x=0\end{matrix}\right.\)