Câu a đúng là cú lừa, biến đổi logarit thì dễ, đến lúc nó ra pt vô tỉ theo x mới thấy vấn đề :D
a/ĐK: \(0< x< 1\)
\(2log_2x-log_2\left(1-\sqrt{x}\right)=log_2\left(x-2\sqrt{x}+2\right)\)
\(\Leftrightarrow log_2x^2-log_2\left(1-\sqrt{x}\right)=log_2\left(x-2\sqrt{x}+2\right)\)
\(\Leftrightarrow log_2\left(\dfrac{x^2}{1-\sqrt{x}}\right)=log_2\left(x-2\sqrt{x}+2\right)\)
\(\Leftrightarrow\dfrac{x^2}{1-\sqrt{x}}=x-2\sqrt{x}+2=x+2\left(1-\sqrt{x}\right)\)
Đặt \(1-\sqrt{x}=t\) (\(0< t< 1\)) \(\Rightarrow\dfrac{x^2}{t}=x+2t\)
\(\Leftrightarrow x^2-t.x-2t^2=0\) \(\Rightarrow\Delta=t^2+8t^2=9t^2\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{t+3t}{2}=2t\\x=\dfrac{t-3t}{2}=-t< 0\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x=2\left(1-\sqrt{x}\right)\Rightarrow x+2\sqrt{x}-2=0\) \(\Rightarrow x=4-2\sqrt{3}\)
b/ĐK \(x>0\)
\(log_3\left(x-1\right)^2-log_3x+\left(x-1\right)^2=x\)
\(\Leftrightarrow log_3\left(x-1\right)^2+\left(x-1\right)^2=log_3x+x\)
Xét hàm \(f\left(t\right)=log_3t+t\) \(\left(t>0\right)\Rightarrow f'\left(t\right)=\dfrac{1}{t.ln3}+1>0\Rightarrow f\left(t\right)\) đồng biến
\(\Rightarrow f\left(t_1\right)=f\left(t_2\right)\Leftrightarrow t_1=t_2\)
\(\Rightarrow log_3\left(x-1\right)^2+\left(x-1\right)^2=log_3x+x\Leftrightarrow\left(x-1\right)^2=x\)
\(\Leftrightarrow x^2-3x+1=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{5}}{2}\\x=\dfrac{3-\sqrt{5}}{2}\end{matrix}\right.\)