Từ pt trên ta có: \(x^2+y=\left(3-y\right)x\) (1)
Biến đổi pt dưới:
\(x^4+2x^2y+y^2+x^2y-5x^2=0\Leftrightarrow\left(x^2+y\right)^2=\left(5-y\right)x^2\) (2)
Thế (1) vào (2) ta được:
\(\left(3-y\right)^2x^2=\left(5-y\right)x^2\Leftrightarrow x^2\left(y^2-5y+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\y=1\\y=4\end{matrix}\right.\)
Với \(x=0\) thay vào pt đầu \(\Rightarrow y=0\)
Với \(y=1\) thay vào pt đầu: \(x^2-2x+1=0\Rightarrow x=1\)
Với \(y=4\) thay vào pt đầu \(x^2+x+4=0\) (vô nghiệm)
Vậy hệ đã cho có 2 cặp nghiệm \(\left(x;y\right)=\left(0;0\right);\left(1;1\right)\)