Xét \(x^2-3xy+y^2=0\)
\(\Leftrightarrow\left(x-y\right)\left(x-2y\right)=0\)
Đơn giản rồi nhé
Xét \(x^2-3xy+y^2=0\)
\(\Leftrightarrow\left(x-y\right)\left(x-2y\right)=0\)
Đơn giản rồi nhé
Giải pt và hệ pt:
a)\(\sqrt{5x+1}-\sqrt{4-x}+2x^2-5x+6=0\)
b)\(\left\{{}\begin{matrix}\sqrt{2x+1}+\sqrt{2y+1}=\frac{\left(x-y\right)^2}{2}\\\left(x+y\right)\left(x+2y\right)+3x+2y=4\end{matrix}\right.\)
giải hệ phương trình\(\left\{{}\begin{matrix}xy^2-2y+3x^2=0\\y^2+x^2y+2x=0\end{matrix}\right.\)
Giải các hệ phương trình sau:
a, \(\left\{{}\begin{matrix}5x+3y=8xy\\3x+2y=5xy\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}-x+y=xy\\4x+3y=5xy\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}2x-y=5\\\left(x+y+2\right)\left(x+2y-5\right)=0\end{matrix}\right.\)
giải hệ pt:
\(\left\{{}\begin{matrix}x^2+xy=3x-y\\x^4+3x^2y-5x^2+y^2=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}3xy+x=6y+2\\\frac{5}{2x+1}+\frac{4y}{3y+1}=3\end{matrix}\right.\)
a) \(\left\{{}\begin{matrix}2x+5y=3\\3x-2y=-8\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x+3y=5\\2x-5y=-1\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}3x-4y=18\\2x+y=1\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}x-2y+z=12\\2x-y+3z=18\\-3x+3y+3z=-9\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}x-2y+4z=13\\y-3z=-7\\7z=14\end{matrix}\right.\)
f) \(\left\{{}\begin{matrix}2x+y+3z=2\\-x+4y-6z=5\\5x-y+3z=-5\end{matrix}\right.\)
Bài 1: giải hệ pt
\(\left\{{}\begin{matrix}x+2y=1\\2x^{2^{ }}-5xy=48\end{matrix}\right.\)
bài 2: giải các pt sau:
a/ \(\left(x^2-1\right)^2-4\left(x^2-1\right)=5\)
b/\(\left(x+2\right)^2-3x-5=\left(1-x\right)\left(1+x\right)\)
c/ \(\left(x^2-3x+4\right)\left(x^2-3x+2\right)=3\)
Giải hệ phương trình sau:
a)\(\left\{{}\begin{matrix}3x-y=5\\2x+3y=18\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}2x-5y=11\\3x+4y=5\end{matrix}\right.\) c)\(\left\{{}\begin{matrix}\frac{14}{x-y+2}-\frac{10}{x+y-1}=9\\\frac{3}{x-y+2}+\frac{2}{x+y-1}=4\end{matrix}\right.\)
Giúp em với ạ, em cần gấp lắm
Giải hệ phương trình:
\(\left\{{}\begin{matrix}x^2+4x+y=0\\\left(x+2\right)^4+5y=16\end{matrix}\right.\)