Giải phương trình:
a) \(\left\{{}\begin{matrix}x+y+\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{9}{2}\\xy+\dfrac{1}{xy}=\dfrac{5}{2}\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}4x^2+1=y^2-4x\\x^2+xy+y^2=1\end{matrix}\right.\)
Giải các hệ phương trình sau:
a, \(\left\{{}\begin{matrix}5x+3y=8xy\\3x+2y=5xy\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}-x+y=xy\\4x+3y=5xy\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}2x-y=5\\\left(x+y+2\right)\left(x+2y-5\right)=0\end{matrix}\right.\)
Giải hệ phương trình sau:
a)\(\left\{{}\begin{matrix}3x-y=5\\2x+3y=18\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}2x-5y=11\\3x+4y=5\end{matrix}\right.\) c)\(\left\{{}\begin{matrix}\frac{14}{x-y+2}-\frac{10}{x+y-1}=9\\\frac{3}{x-y+2}+\frac{2}{x+y-1}=4\end{matrix}\right.\)
Giúp em với ạ, em cần gấp lắm
Giải hệ phương trình:\(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{1}{y}=2\\\dfrac{6}{x}-\dfrac{2}{y}=1\end{matrix}\right.\)
giải hệ pt:
\(\left\{{}\begin{matrix}x^2+xy=3x-y\\x^4+3x^2y-5x^2+y^2=0\end{matrix}\right.\)
giải hệ phương trình\(\left\{{}\begin{matrix}xy^2-2y+3x^2=0\\y^2+x^2y+2x=0\end{matrix}\right.\)
a) \(\left\{{}\begin{matrix}2x+5y=3\\3x-2y=-8\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x+3y=5\\2x-5y=-1\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}3x-4y=18\\2x+y=1\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}x-2y+z=12\\2x-y+3z=18\\-3x+3y+3z=-9\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}x-2y+4z=13\\y-3z=-7\\7z=14\end{matrix}\right.\)
f) \(\left\{{}\begin{matrix}2x+y+3z=2\\-x+4y-6z=5\\5x-y+3z=-5\end{matrix}\right.\)
Giải HPT \(\left\{{}\begin{matrix}xy=x+y+1\\yz=y+z+5\\zx=z+x+2\\\end{matrix}\right.\)
Cho hệ phương trình \(\left\{{}\begin{matrix}\left(m+1\right)x-y=m+1\\x+\left(m-1\right)y=2\end{matrix}\right.\)
Tìm m để hệ pt có nghiệm duy nhất (x;y) thỏa mãn x+y đạt GTNN