Điều kiện : x ≠ -2 ;y ≠ -2
Đặt : \(\dfrac{1}{x+2}=a;\dfrac{1}{y+2}=b\)
Ta có :
\(hpt\text{⇔}\left\{{}\begin{matrix}2a+b=1\\8x-5b=1\end{matrix}\right.\text{⇔}\left\{{}\begin{matrix}a=\dfrac{1}{3}\\b=\dfrac{1}{3}\end{matrix}\right.\)
Suy ra:
\(\left\{{}\begin{matrix}x+2=3\\y+2=3\end{matrix}\right.\text{⇔}\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
Vậy nghiệm của hệ phương trình : (x ; y) = (1;1)
Ta có: \(\left\{{}\begin{matrix}\dfrac{2}{x+2}+\dfrac{1}{y+2}=1\\\dfrac{8}{x+2}-\dfrac{5}{y+2}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{8}{x+2}+\dfrac{4}{y+2}=4\\\dfrac{8}{x+2}-\dfrac{5}{y+2}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{9}{y+2}=3\\\dfrac{2}{x+2}+\dfrac{1}{y+2}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y+2=3\\\dfrac{2}{x+2}=1-\dfrac{1}{3}=\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=1\end{matrix}\right.\)
Vậy:(x,y)=(1;1)