Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Cô Pê

Giải hệ phương trình sau: \(\left\{{}\begin{matrix}\sqrt{x}\left(1+y\right)=2y\\\sqrt{y}\left(1+z\right)=2z\\\sqrt{z}\left(1+x\right)=2x\end{matrix}\right.\)

Nguyễn Việt Lâm
16 tháng 1 2019 lúc 12:55

ĐKXĐ: \(x,y,z\ge0\)

Từ pt đầu tiên, áp dụng BĐT Cauchy: \(1+y\ge2\sqrt{y}\) \(\Rightarrow\sqrt{x}\left(1+y\right)\ge2\sqrt{xy}\)

\(\Rightarrow2y\ge2\sqrt{xy}\Rightarrow\sqrt{y}\ge\sqrt{x}\Rightarrow y\ge x\)

Tương tự ta có \(2z=\sqrt{y}\left(1+z\right)\ge2\sqrt{yz}\Rightarrow z\ge y\)

\(2x=\sqrt{z}\left(1+x\right)\ge2\sqrt{xz}\Rightarrow x\ge z\)

\(\Rightarrow\left\{{}\begin{matrix}y\ge x\\z\ge y\\x\ge z\end{matrix}\right.\) \(\Rightarrow x=y=z\)

Thay vào pt đầu ta được:

\(\sqrt{x}\left(1+x\right)=2x\Leftrightarrow2x-\sqrt{x}\left(1+x\right)=0\)

\(\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-1-x\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\-x+2\sqrt{x}-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\-\left(\sqrt{x}-1\right)^2=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=y=z=0\\x=y=z=1\end{matrix}\right.\)

Vậy hệ có 2 bộ nghiệm:

\(\left(x,y,z\right)=\left(0,0,0\right);\left(1,1,1\right)\)


Các câu hỏi tương tự
Kiều Ngọc Tú Anh
Xem chi tiết
Lê Thị Bích Thảo
Xem chi tiết
Kim Trí Ngân
Xem chi tiết
Hoàng Cường
Xem chi tiết
Hoàng Ngọc Tuyết Nung
Xem chi tiết
Cố Gắng Hơn Nữa
Xem chi tiết
Wang Soo Yi
Xem chi tiết
bach nhac lam
Xem chi tiết
Nguyễn Thu Trà
Xem chi tiết