Điều kiện: \(x+y\ne0\)
Đặt \(t=\dfrac{1}{x+y} \text{thì} (2) \Rightarrow 2x+t=3\Leftrightarrow \left\{ \begin{align} & x=\dfrac{3-t}{2} \\ & y=\dfrac{{{t}^{2}}-3t+2}{2t} \\ \end{align} \right. \)
Thay vào (1) ta được:
\(\begin{array}{l} 4{t^4} - 6{t^3} + 4{t^2} - 6t + 4 = 0 \Leftrightarrow {\left( {t - 1} \right)^2}\left( {4{t^2} + 2t + 4} \right) = 0\\ \Leftrightarrow t = 1 \Leftrightarrow x + y = 1 \Leftrightarrow \left\{ \begin{array}{l} x = 1\\ y = 0 \end{array} \right. \end{array}\)
Vậy nghiệm hệ phương trình là $(1;0)$