Đặt \(\begin{cases}u=9^{\sin x}\\v=-9^{2\cot x}\end{cases}\) (u>0, v<0)
Hệ trở thành
\(\begin{cases}u+v=2\\u.v=-3\end{cases}\)
Khi đó u, v là nghiệm của phương trình \(t^2-2t-3=0\)
Phương trình này có 2 nghiệm t=-1 và t=3.
Vì u>0, v<0 nên v=3, v=-1
Thay lại ta được\(\begin{cases}9^{\sin y}=3\\-9^{2\cot x}=-1\end{cases}\)
\(\Leftrightarrow\begin{cases}\sin y=\frac{1}{2}\\\cot x=0\end{cases}\)
\(\begin{cases}\begin{cases}y=\frac{\pi}{6}+2k\pi\\y=\frac{5\pi}{6}+2k\pi\end{cases}\\x=\frac{\pi}{2}+l\pi\end{cases}\) (\(k,l\in Z\))