đặt \(\left\{{}\begin{matrix}a=x\\b=\dfrac{1}{y}\end{matrix}\right.\)
rồi cộng vế 2 pt
đặt \(\left\{{}\begin{matrix}a=x\\b=\dfrac{1}{y}\end{matrix}\right.\)
rồi cộng vế 2 pt
giải hệ phương trình
\(\left\{{}\begin{matrix}\sqrt{x-2}+\sqrt{y-3}=3\\2\sqrt{x-2}-3\sqrt{y-3}=-4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{3x}{x+1}+\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5}{y+4}=4\end{matrix}\right.\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}y^2+\dfrac{1}{x^2}+\dfrac{y}{x}=12\\y+\dfrac{1}{x}+\dfrac{y}{x}=8\end{matrix}\right.\)
Giải hệ phương trình:
a)\(\left\{{}\begin{matrix}x+y+xy=5\\x^2+y^2+xy=7\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\dfrac{1}{x+y}+\dfrac{1}{x-y}=3\\\dfrac{2}{x+y}-\dfrac{3}{x-y}=1\end{matrix}\right.\)
Giải hệ phương trình :
\(\left\{{}\begin{matrix}x^2+x+\dfrac{1}{y}\left(1+\dfrac{1}{y}\right)=4\\x^3+\dfrac{x}{y^2}+\dfrac{x^2}{y}+\dfrac{1}{y^3}=4\end{matrix}\right.\)
Giải hệ
1) \(\left\{{}\begin{matrix}x-\dfrac{1}{x}=y-\dfrac{1}{y}\\2x^2-xy-1=0\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}y\left(4x^3+1\right)=3\\y^3\left(3x-1\right)=4\end{matrix}\right.\)
Giải các hệ phương trình:
a) \(\left\{{}\begin{matrix}\left(x+3\right)\left(y-5\right)=xy\\\left(x-2\right)\left(y+5\right)=xy\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{3}{4}\\\dfrac{1}{6x}+\dfrac{1}{5y}=\dfrac{2}{15}\end{matrix}\right.\)
giải hệ pt:
(1) \(\left\{{}\begin{matrix}x^2-3xy+2y^2=0\\3x+y=6\end{matrix}\right.\)
(2)\(\left\{{}\begin{matrix}\dfrac{x-1}{2x+1}-\dfrac{y-2}{y+2}=1\\\dfrac{3x-3}{2x+1}+\dfrac{2y-4}{y+2}=3\end{matrix}\right.\)
(3)\(\left\{{}\begin{matrix}2\left(x+y\right)+\sqrt{x+1}=4\\x+y-3\sqrt{x+1}=-5\end{matrix}\right.\)
giải hệ phương trình :
\(\left\{{}\begin{matrix}x^2+\dfrac{1}{y^2}+\dfrac{x}{y}=3\\x+\dfrac{1}{y}+\dfrac{x}{y}=3\end{matrix}\right.\)
Giải hệ phương trình sau: \(\left\{{}\begin{matrix}\sqrt{\dfrac{x}{y}}+\sqrt{\dfrac{y}{x}}=\dfrac{5}{2}\\x+y-5=0\end{matrix}\right.\)