(Pt trên là pt (1), pt dưới là pt (2))
Đk: \(x;y\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}3=2x^3+x^2y\\3=2y^3+xy^2\end{matrix}\right.\)
\(\Rightarrow2\left(x^3-y^3\right)+\left(x^2y-xy^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+2xy+y^2\right)=0\)\(\Leftrightarrow\left(x-y\right)\left(x+y\right)^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)
TH1: \(x=y\) thay vào pt (1) \(\Rightarrow\dfrac{3}{y^2}=2y+y\)
\(\Leftrightarrow3=3y^3\) \(\Leftrightarrow y=1\) \(\Rightarrow x=y=1\) (TM)
TH2:\(x=-y\) thay vào pt (1) \(\Rightarrow\dfrac{3}{y^2}=-2y+y\)
\(\Leftrightarrow\dfrac{3}{y^2}=-1\left(L\right)\)
Vậy (x;y)=(1;1)
ĐKXĐ: ...
Cộng vế với vế: \(3\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)=3\left(x+y\right)\Rightarrow x+y=\dfrac{1}{x^2}+\dfrac{1}{y^2}\)
Trừ vế cho vế:
\(3\left(\dfrac{1}{x^2}-\dfrac{1}{y^2}\right)=x-y\)
\(\Leftrightarrow-3\left(\dfrac{x-y}{xy}\right)\left(\dfrac{x+y}{xy}\right)=x-y\)
\(\Leftrightarrow\left(x-y\right)\left(1+\dfrac{3\left(x+y\right)}{x^2y^2}\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(1+\dfrac{3\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)}{x^2y^2}\right)=0\)
\(\Leftrightarrow x-y=0\) (do \(1+\dfrac{3\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)}{x^2y^2}>0\))
Thế vào pt đầu:
\(\dfrac{3}{x^2}=3x\Leftrightarrow x^3=1\Leftrightarrow x=y=1\)