B=1+\(\left(\frac{2a+\sqrt{a}-1}{1-a}-\frac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}\right).\frac{a-\sqrt{a}}{2\sqrt{a}-1}\)
a)Rút gon B
b)Tìm a để B=\(\frac{\sqrt{6}}{1+\sqrt{6}}\)
c)CMR B>\(\frac{2}{3}\)
Cho biểu thức P=\(\frac{\sqrt{x}-3}{2-\sqrt{x}}+\frac{\sqrt{x}-2}{3+\sqrt{x}}-\frac{9-x}{x+\sqrt{x}-6}\)
a Rút gọn biểu thức P
b Tìm x để P=\(\frac{7}{12}\)
c Tìm x để P>\(\frac{1}{2}\)
CHUYÊN ĐỀ PHƯƠNG TRÌNH - HỆ PHƯƠNG TRÌNH CHỌN LỌC
Bài 1: Giải phương trình ẩn x sau :
a) \(\sqrt{\frac{1}{x+3}}+\sqrt{\frac{5}{x+4}}=4\)
b) \(\sqrt[8]{1-x}+\sqrt[3]{1+x}+\sqrt[8]{1-x^2}=3\)
Bài 2: Giải hệ phương trình :
a) \(\left\{{}\begin{matrix}x^4-x^3+3x^2-4y-1=0\\\sqrt{\frac{x^2+4y^2}{2}}+\sqrt{\frac{x^2+2xy+4y^2}{3}}=x+2y\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\frac{y}{2x+1}=\frac{\sqrt{2x+1}+1}{\sqrt{y}+1}\\4x^2+5=y^2\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}x^2-xy+y^2=3\\z^2+yz+1=0\end{matrix}\right.\)
P/s: ai có lời giải đúng, đẹp tặng 1GP mỗi phần.
a)\(\left\{{}\begin{matrix}2x+\left|y\right|=3\\x-y=6\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\sqrt{3}x+y=\sqrt{2}\\\sqrt{3}x-\sqrt{2}y=-1\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}2\sqrt{x+3}+\sqrt{y^2-4y+4}=2\\\sqrt{x+3}-3\left|2-y\right|=1\end{matrix}\right.\)
Rút gọn
a,\(\sqrt{227-30\sqrt{2}}\) + \(\sqrt{123+22\sqrt{2}}\)
b,\(\dfrac{\sqrt{6+2\left(\sqrt{6}+\sqrt{3}+\sqrt{2}\right)}-\sqrt{6-2\left(\sqrt{6}-\sqrt{3}+\sqrt{2}\right)}}{\sqrt{2}}\)
c, \(\sqrt{2-\sqrt{3}}\) (\(\sqrt{5}\) + \(\sqrt{2}\))
Rút gọn :
a) \(\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}+\dfrac{x-y}{\sqrt{x}-\sqrt{y}}\)
b) \(\sqrt{\left(\sqrt{5}-1\right).\sqrt{13-\sqrt{69-28\sqrt{5}}}}\)
c) \(\dfrac{\sqrt{3+\sqrt{5}}.\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{10}+\sqrt{2}\right)\left(3-\sqrt{5}\right)}{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}\)
rút gọn
\(\sqrt{3}+\sqrt{11+6\sqrt{ }2}-\sqrt{5}+2\sqrt{6}\)\(\sqrt{2}+\sqrt{6+2\sqrt{ }5}-\sqrt{7+2\sqrt{ }10}\)
\(\sqrt{6+\sqrt{ }6+\sqrt{ }6+\sqrt{ }6........}\)
\(\sqrt{3+\sqrt{ }5+2\sqrt{ }3}+\sqrt{3-\sqrt{ }5+2\sqrt{ }3}\)
\(\sqrt{227-30\sqrt{ }2}+\sqrt{123}+22\sqrt{2}\)
Giải phương trình:
a) \(x^2+\sqrt{x+1}=1\)
b)\(\sqrt{3+x}+\sqrt{6-x}=3\)
c)\(\sqrt{3x-2}+\sqrt{x-1}=3\)
d)\(\sqrt{3+x}-\sqrt{2-x}=1\)
e)\(\sqrt{x+9}=5-\sqrt{2x+4}\)
f)\(\sqrt{3x+4}-\sqrt{2x-1}=\sqrt{x+3}\)
g)\(x-\sqrt{4x-3}=2\)
với ba số a,b,c >hoặc =0. Chứng minh BĐT sau:
A= \(a+b+c+1\ge\frac{2}{3}\left(\sqrt{ab}+\sqrt{bc}+\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)