Cho 2 số thực x ; y thỏa mãn 0 < x ≤ 1 , 0 < y ≤ 1 và x + y = 3xy . Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = x2 + y2 - 4xy
tìm giá trị nhỏ nhất của biểu thức
\(A=x+\dfrac{9}{x-1}+3\) với x>1
Cho x>0 ,y>0 và x+y =2 . Tìm giá trị nhỏ nhất của biểu thức :
P = 2x^2 -y^2 -5x +1/x +2020
Cho 2 số thực x, y thỏa mãn x ≥ 3, y ≥ 3. Tính giá trị nhỏ nhất của biểu thức T = 21( x + \(\dfrac{1}{y}\) ) + 3( y + \(\dfrac{1}{x}\) )
1, cho x,y là các số thực dương thỏa mãn điều kiện:x+y≤1. Tìm giá trị nhỏ nhất của biểu thức: K=\(4xy+\dfrac{1}{x^2+y^2}+\dfrac{2}{xy}\)
cho các số thực dương x,y thỏa mãn \(x+\dfrac{1}{y}\le1\) tìm giá trị nhỏ nhất của biểu thức P=\(\dfrac{x^2-2xy+2y^2}{xy+y^2}\)
Gía trị nhỏ nhất của biểu thức \(\dfrac{x^2-1}{x^2+1}\)
cho biểu thức
A=(\(\dfrac{x\sqrt{x}-x}{x-1}+\dfrac{4\sqrt{x}}{x+\sqrt{x}}\)) : \(\dfrac{\sqrt{x}}{\sqrt{x}+1}\) ( với \(x\ge0,x\ne1\) )
a, rút gọn
b, tìm giá trị nhỏ nhất của biểu thức A
Tìm giá trị nhỏ nhất của biểu thức A=1/x+2/(1-x) với 0<x<1