Có :\(A=x+\dfrac{9}{x-1}+3=x-1+\dfrac{9}{x-1}+4\ge2\sqrt{\left(x-1\right)\cdot\dfrac{9}{x-1}}+4=10\)
(Cô-si)
Dấu "=" xảy ra <=> x - 1 = \(\dfrac{9}{x-1}\)
\(\Leftrightarrow x=4\)
Vậy MinA = 10 <=> x = 4
\(A=x+\dfrac{9}{x-1}+3\\ =\left(x-1\right)+1+\dfrac{9}{x-1}+3\\ =x-1+\dfrac{9}{x-1}+4\)
Áp dụng bất đẳng thức Cauchy-Schwarz ta được:
\(x-1+\dfrac{9}{x-1}\ge2\sqrt{\left(x-1\right)\dfrac{9}{x-1}}=2\sqrt{9}=2.3=6\\ \rightarrow A\ge6+4=10\)Dấu "=" xảy ra khi và chỉ khi \(x-1=\dfrac{9}{x-1}\\ \Leftrightarrow\left(x-1\right)^2=9\\ \Leftrightarrow\left[{}\begin{matrix}x-1=3\\x-1=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=4\left(nhận\right)\\x=-2\left(loại\right)\end{matrix}\right.\)Vậy \(GTNN\) của A là \(10\Leftrightarrow x=4\)