tìm số tự nhiên n để mỗi phép chia sau là phép chia hết:
(x^4y^4-2x^2y^2):x^ny^n
Cho các số thực dương x;y thỏa mãn: \(6x+9-\sqrt{y}.\left(y+1\right)=3y-\left(2x+4\right).\sqrt{2x+3}\). Tìm giá trị nhỏ nhất của biểu thức: \(D=xy+3y-4x^2-3\)
Xác định sao cho chia hết cho
Trả lời: Giá trị của thỏa mãn bài toán là
Cho số thực x,y thỏa mãn \(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\). Tính giá trị của
\(P=x^7+y^7+2x^5+2y^5-3x^3-3y^3+4x+4y+100\)
lúc nãy gõ thiếu đề, h gõ lại ạ
1.giải phương trình: \(\sqrt{x+4}+\sqrt{x-4}=2\left(\sqrt{x^2-16}+x-6\right)\)
2. cho \(T=sin^6x+cos^6x+3sin^2x.cos^2x+tan^2x.cos^2x+cotan^2x.sin^2x\left(0< x< 90^0\right)\). CMR giá trị của T không phụ thuộc vào biến x
3. cho a, b là các số dương thỏa mãn a+b=1. Cmr: \(B=a^3+b^3+8\left(a^4+b^4\right)+\frac{2}{ab}\ge\frac{37}{4}\). Đẳng thức xảy ra khi nào?
4. giải bằng hai cách: tìm x, y nguyên thỏa mãn phương trình: \(x^2-2y^2=1\)
Cho hệ pt : \(\left\{{}\begin{matrix}mx+3y=4\\2x-my=-3\end{matrix}\right.\)
a) Tìm m để HPT có vô số nghiệm
b) Với giá trị nào của m thì nghiệm của HPT thỏa mãn x<0 và y>0
cho a,b>0 thỏa mãn \(\left(\sqrt{a}+2\right)\left(\sqrt{b}+2\right)=9\)
Tìm giá trị nhỏ nhất của biểu thức T=\(\dfrac{a^4}{b}+\dfrac{b^4}{a}\)
Câu 1: Cho hai số thực a,b thỏa mãn điều kiện ab=1,a+b khác 0. Tính giá trị biểu thức:
P=1/(a+b)^3(1/a^3+1/b^3)+3/(a+b)^4(1/a^2+1/b^2)+6/(a+b)^5(1/a+1/b)
Câu 2:
a) Giải phương trình:2x^2+x+3=3x căn(x+3)
b) Chứng minh rằng abc(a^3-b^3)(b^3-c^3)(c^3-a^3) chia hết cho 7 với mọi số nguyên a,b,c.
Câu 3: Cho hai số dương a,b thỏa mãn điều kiện a+b<=1. Chứng minh rằng:a^2-3/(4a)-a/b<=-9/4
Câu 4: Cho phương trình x^2-2(m-2)x+m^2-3m+3=0(m là tham số). Tìm m để phương trình có hai nghiệm x_1 và x_2 sao cho 3x_1.x_2-x_1^2-x_2^2-5=0
Câu 5: Giải hệ phương trình:
x+y=-6, căn((y+2)/(2x-1))+căn((2x-1)/(y+2))=2
Câu 6: Tìm nghiệm nguyên của phương trình:
3x^2-2y^2-5xy+x-2y-7=0
Câu 7: Cho x,y là các số thực dương thay đổi thỏa mãn điều kiện x+y<=1. Tìm min của P=(x^2+1/4y^2)(y^2+1/4x^2)
Câu 8: Giải phương trình và hệ phương trình:
a) (x^2-9)căn(2-x)=x(x^2-9)
b) (x^2+4y^2)^2-4(x^2+4y^2)=5,3x^2+2y^2=5
Câu 9: Cho phương trình (x-2m)(x+m-3)/(x-1)=0.Tìm m để x_1^2+x_2^2-5x_1.x_2=14m^2-30m+4
Câu 10: Chứng minh rằng với mọi số nguyên n>=1 ta luôn có:1/ căn(n+1)-căn(n)>=2 căn n