\(a-b=a-\dfrac{a+2}{3}+\dfrac{2a-7}{3}=\dfrac{3a-\left(a+2+2a-7\right)}{3}=\dfrac{5}{3}\)
\(a-b=a-\left[\dfrac{a+2}{3}+\dfrac{2a-7}{3}\right]=\dfrac{3a-\left(a+2+2a-7\right)}{3}=\dfrac{5}{3}\)
\(a-b=a-\dfrac{a+2}{3}+\dfrac{2a-7}{3}=\dfrac{3a-\left(a+2+2a-7\right)}{3}=\dfrac{5}{3}\)
\(a-b=a-\left[\dfrac{a+2}{3}+\dfrac{2a-7}{3}\right]=\dfrac{3a-\left(a+2+2a-7\right)}{3}=\dfrac{5}{3}\)
cho biểu thức P=\(\left(\dfrac{a}{3a^2-6a}+\dfrac{2a-3}{2a^2-a^3}\right).\dfrac{6a}{a^2-6a+9}\)
a.rút gọn P
b.tìm giá trị của A để P>0
Tính giá trị của biểu thức: \(M=\dfrac{1}{x+2}+\dfrac{1}{y+2}+\dfrac{1}{z+2}\), biết rằng 2a=by+cz, 2b=ax+cz, 2c=ax+by và \(a+b+c\ne0\)
Tính giá trị của biểu thức: \(M=\dfrac{1}{x+2}+\dfrac{1}{y+2}+\dfrac{1}{z+2}\), biết rằng 2a=by+cz, 2b=ax+cz, 2c=ax+by và \(a+b+c\ne0\)
Rút gọn A=\((\dfrac{1}{2a+b} - \dfrac{a^2 -1 }{2a^3 -b +2a -a^2b}) : (\dfrac{4a+2b}{a^3b+ab} - \dfrac{2}{a})\)
Tính A biết 4a^2+b^2=5ab và a>b>0
Cho 2 số thực a, b thỏa mãn ab ≠ 0, a ≠ 1, b ≠ 1 và a + b = 1. Tính giá trị của biểu thức
\(P=\dfrac{a}{b^3-1}-\dfrac{b}{a^3-1}+\dfrac{2\left(a-b\right)}{a^2b^2+3}\)
Cho 2 số thực a, b thỏa mãn ab ≠ 0, a ≠ 1, b ≠ 1 và a + b = 1. Tính giá trị của biểu thức
\(P=\dfrac{a}{b^3-1}-\dfrac{b}{a^3-1}+\dfrac{2\left(a-b\right)}{a^2b^2+3}\)
Cho các đa thức: \(A=x-5x^2+8x-4\)
\(B=\dfrac{x^5}{30}-\dfrac{x^3}{6}+\dfrac{2x}{15}\)
a) Phân tích A, B thành nhân tử
b) CM: B luôn nhận giá trị nguyên khác 17 với mọi giá trị nguyên của x
a) tìm giá trị nhỏ nhất của biểu thức
Q = x2+2y2+2xy-2x+2015
b) cho a,b,c>0 thỏa mãn ABC= 1
Cminh: \(\dfrac{1}{a^2+2b^2+3}+\dfrac{1}{b^2+2c^2+3}+\dfrac{1}{c^2+2a^2+3}< =\dfrac{1}{2}\)
Cho a,b cùng dấu. Chứng minh:
\(\dfrac{a^2b}{2a^2+b^3}+\dfrac{2}{3}\ge\dfrac{a^2+2ab}{2a^2+b^2}\)