Giải bất phương trình: \(\left|x^2-\sqrt{x-3}\right|< \left|x^2-2\right|+\left|2-\sqrt{x-3}\right|\)
1. giải các bất phương trình sau :
a, \(\sqrt{x^2-2x-15}\le x-4\)
b, \(\sqrt{x^2+14x}>x+6\)
c, \(\left(x-3\right)\sqrt{x^2-4}\le x^2-9\)
d, \(\sqrt{5x^2+10x+1}\ge7-2x-x^2\)
Lập bảng xét dấu các biểu thức sau:
a. f(x)= \(x\left(x-2\right)^2\left(3-x\right)\)
b. f(x)=\(\dfrac{x\left(x-3\right)^2}{\left(x-5\right)\left(1-x\right)}\)
c. f(x)=\(-x^2+x+6\)
d. f(x)= 2\(x^2-\left(2+\sqrt{3}\right)x+\sqrt{3}\)
Cho hệ bất phương trình \(\left\{{}\begin{matrix}\frac{\left(x-\sqrt{2}\right)\left(2-2x\right)}{\left(2x-1\right)\left(x+2\right)}>0\\mx>2\end{matrix}\right.\)
a) Giải hệ bất phương trình khi m= -1
b)Tìm m để hệ bất phương trình có nghiệm
\(\sqrt{2x^2-2\left(m-1\right)x+3}=x-2\)
1) \(\sqrt{2x^2+4x-1}>x+1\)
2)\(\sqrt{4x^2+101x+64}>2\left(x+10\right)\)
3)\(\sqrt{x^2-5x-14}>x-3\)
1. Giải các bất phương trình sau :
a, \(\left|3x-7\right|\ge-2x+28\)
b, \(\left|x^2+x-3\right|>x^2+3x+3\)
c, \(\left|x-1\right|+\left|-2x+6\right|\ge x-5\)
d, \(\frac{\left|x-2\right|+7}{\left|4-x\right|+x+1}< 2\)
e, \(\frac{\left|2x-1\right|}{\left(x+1\right)\left(x-2\right)}\le\frac{1}{2}\)
f, \(\frac{\left(2x-3\right)\left(\left|x-1\right|+2\right)}{\left|x-1\right|-2}\le0\)
Xét dấu các biểu thức :
a. \(f\left(x\right)=\left(2x-1\right)\left(x+3\right)\)
b. \(f\left(x\right)=\left(-3x-3\right)\left(x+2\right)\left(x+3\right)\)
c. \(f\left(x\right)=-\dfrac{4}{3x+1}-\dfrac{3}{2-x}\)
d. \(f\left(x\right)=4x^2-1\)
1) \(\dfrac{5}{x-3}+\dfrac{3}{x+2}\le\dfrac{3+2x}{x^2-x-6}\)
2) \(\dfrac{1}{x^2-4}+\dfrac{2}{x+2}< \dfrac{-3}{x-2}\)
3) (4-x-\(3x^2\)).(x+2).(x+1) > 0
4) (\(x^3\)-9x).(x-3) ≥ 0
5) \(\left|4-x\right|\) ≥ 2x-1
6) \(\left|x-2\right|\) ≤ 1-x
7) \(\left|x+2\right|+2x-3\le0\)
8) \(\sqrt{x^2+6x+9}-2x+1>0\)