\(\sqrt{2x^2+4x-1}=\sqrt{2\left(x+\dfrac{2-\sqrt{6}}{2}\right)\left(x+\dfrac{2+\sqrt{6}}{2}\right)}\)
\(\Rightarrow\) BXD :
\(x\) | \(-\infty\) | \(\dfrac{-2-\sqrt{6}}{2}\) | \(\dfrac{-2+\sqrt{6}}{2}\) | \(+\infty\) | ||||
\(x+\dfrac{2-\sqrt{6}}{2}\) | \(-\) | \(-\) | \(-\) | \(-\) | \(0\) | \(+\) | \(+\) | |
\(x+\dfrac{2+\sqrt{6}}{2}\) | \(-\) | \(-\) | \(0\) | \(+\) | \(+\) | \(+\) | \(+\) | |
\(\sqrt{2x^2+4x-1}\) | \(+\) | \(+\) | \(0\) | oxđ | \(0\) | \(+\) | \(+\) |
\(\Rightarrow\) \(\sqrt{2x^2+4x-1}\) xác định \(\Leftrightarrow x\in\left(-\infty;\dfrac{-2-\sqrt{6}}{2}\right)\cup\left(\dfrac{-2+\sqrt{6}}{2};+\infty\right)\)
ta có : \(\sqrt{2x^2+4x-1}>x+1\)
\(\Leftrightarrow\sqrt{2x^2+4x-1}-x-1>0\)
\(\Rightarrow\) BXD :
\(x\) | \(-\infty\) | \(\dfrac{-2-\sqrt{6}}{2}\) | \(-1\) | \(\dfrac{-2+\sqrt{6}}{2}\) | \(+\infty\) | ||||
\(\sqrt{2x^2+4x-1}\) | \(+\) | \(+\) | \(0\) | oxđ | oxđ | oxđ | \(0\) | \(+\) | |
\(-x-1\) | \(+\) | \(+\) | \(\dfrac{\sqrt{6}}{2}\) | bỏ | \(0\) | bỏ | \(\dfrac{-\sqrt{6}}{2}\) | \(-\) | |
\(f\left(x\right)\) | \(+\) | \(+\) | \(0\) | bỏ | bỏ | \(0\) | không rỏ dấu |
bn nào giỏi lm tiếp đi nha