Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Trọng Chiến

GHPT

\(\left\{{}\begin{matrix}7\sqrt{16-y^2}+6=x^2+5x\\\left(x+2\right)^2+2\left(y-4\right)^2=9\end{matrix}\right.\)

Nguyễn Việt Lâm
20 tháng 12 2020 lúc 15:37

ĐKXĐ: ...

\(\Leftrightarrow\left\{{}\begin{matrix}7\sqrt{16-y^2}=x^2+5x-6\\2\left(y-4\right)^2=-x^2-4x+5\end{matrix}\right.\)

\(\Rightarrow7\sqrt{16-y^2}+2\left(y-4\right)^2=x-1\)

Do \(7\sqrt{16-y^2}+2\left(y-4\right)^2\ge0\Rightarrow x-1\ge0\Rightarrow x\ge1\)

\(\Rightarrow\left(x+2\right)^2+2\left(y-4\right)^2\ge\left(x+2\right)^2\ge9\)

Dấu "=" xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}x=1\\y=4\end{matrix}\right.\)

Vậy hệ có cặp nghiệm duy nhất nói trên

Nguyễn Việt Lâm
20 tháng 12 2020 lúc 17:35

Đặt vế trái là P

\(P=\dfrac{x^4}{\dfrac{x^2}{y}+\dfrac{1}{y}}+\dfrac{y^4}{\dfrac{y^2}{z}+\dfrac{1}{z}}+\dfrac{z^4}{\dfrac{z^2}{x}+\dfrac{1}{x}}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}\)

\(P\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{x^3z+y^3x+z^3y+xy+yz+zx}\)

Ta có:

\(x^2y^2+y^2z^2+z^2x^2\ge\dfrac{1}{3}\left(xy+yz+zx\right)^2\ge\dfrac{1}{3}.3\sqrt[3]{xy.yz.zx}\left(xy+yz+zx\right)\)

\(\Rightarrow3\left(x^2y^2+y^2z^2+z^2x^2\right)\ge3\left(xy+yz+zx\right)\) (1)

\(x^4+x^2z^2\ge2\sqrt{x^6z^3}=2x^3z\)

\(y^4+x^2y^2\ge2y^3x\) ; \(z^4+y^2z^2\ge2z^3y\)

\(\Rightarrow x^4+y^4+z^4+x^2y^2+y^2z^2+z^2x^2\ge2\left(x^3z+y^3x+z^3y\right)\) (2)

Lại có: \(x^4+x^4+x^4+z^4\ge4x^3z\) ; \(3y^4+x^4\ge4y^3x\) ; \(3z^4+y^4\ge4z^3y\)

\(\Rightarrow x^4+y^4+z^4\ge x^3z+y^3x+z^3y\) (3)

Cộng vế (1);  (2) và (3):

\(2\left(x^2+y^2+z^2\right)^2\ge3\left(x^3z+y^3x+z^3y+xy+yz+zx\right)\)

\(\Rightarrow P\ge\dfrac{3}{2}\)


Các câu hỏi tương tự
Kim Trí Ngân
Xem chi tiết
fghj
Xem chi tiết
Mỹ Lệ
Xem chi tiết
bach nhac lam
Xem chi tiết
Nguyễn Thu Trà
Xem chi tiết
Phạm Minh Quang
Xem chi tiết
Lunox Butterfly Seraphim
Xem chi tiết
bach nhac lam
Xem chi tiết
Trần Diệp Nhi
Xem chi tiết