Ta có
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
\(\Rightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
Áp dumhj tc của dãy tỉ số bằng nhau ta có
\(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{\left(x-1\right)-\left(2y-4\right)+\left(3z-9\right)}{2-6+12}=\frac{8}{8}=1\)
\(\Rightarrow\begin{cases}x=3\\y=5\\z=7\end{cases}\)
Giải:
Ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-1-2y+4+3z-9}{2-6+12}=\frac{8}{8}=1\)
+) \(\frac{x-1}{2}=1\Rightarrow x=3\)
+) \(\frac{2y-4}{6}=1\Rightarrow y=5\)
+) \(\frac{3z-9}{12}=1\Rightarrow z=7\)
Vậy x = 3 ; y = 5 ; z = 7
bn nhấn vào câu hỏi tương tự
có mấy câu giống bài này
Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
\(\Rightarrow\frac{x-1}{2}=\frac{2\left(y-2\right)}{6}=\frac{3\left(z-3\right)}{12}\)
hay \(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
Áp dụng dãy tỉ số bằng nhau, ta có:
\(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-1-\left(2y-4\right)+3z-9}{2-6+12}=\frac{\left(x-2y+3z\right)-\left(9+1-4\right)}{8}=\frac{14-6}{8}=1\)
\(\Rightarrow x-1=2\Rightarrow2+1=3\)
\(\Rightarrow y-2=3\Rightarrow3+2=5\)
\(\Rightarrow z-3=4\Rightarrow4+3=7\)
Vậy \(\left(x;y;z\right)=\left(3;5;7\right)\)