\(y'=\dfrac{x^2-2x+2m-2}{\left(x-1\right)^2}\)
Hàm có 2 cực trị \(\Leftrightarrow y'=0\) có 2 nghiệm pb khác 1
\(\Leftrightarrow\left\{{}\begin{matrix}2m-3\ne0\\\Delta'=1-\left(2m-2\right)>0\end{matrix}\right.\) \(\Leftrightarrow m< \dfrac{3}{2}\)
Khi đó, phương trình đường thẳng qua 2 cực trị có dạng:
\(y=\dfrac{2x-2m}{1}=2x-2m\)
Đường thẳng này có cùng hệ số góc với d nên chúng song song nhau