\(\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}}\)
= \(\dfrac{\left(a\sqrt{b}+b\sqrt{a}\right)\left(\sqrt{a}-\sqrt{b}\right)}{a-b}\)
= \(\dfrac{a\sqrt{ab}-ab+ab-b\sqrt{ab}}{a-b}\)
= \(\dfrac{\sqrt{ab}\left(a-b\right)}{a-b}=\sqrt{ab}\)
\(\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}}\)
= \(\dfrac{\left(a\sqrt{b}+b\sqrt{a}\right)\left(\sqrt{a}-\sqrt{b}\right)}{a-b}\)
= \(\dfrac{a\sqrt{ab}-ab+ab-b\sqrt{ab}}{a-b}\)
= \(\dfrac{\sqrt{ab}\left(a-b\right)}{a-b}=\sqrt{ab}\)
\(\left(\sqrt{ab}-\sqrt{\dfrac{a}{b}}+\dfrac{1}{a}\sqrt{4ab}+\dfrac{1}{b}\sqrt{\dfrac{b}{a}}\right):\left(1+\dfrac{2}{a}-\dfrac{1}{b}+\dfrac{1}{ab}\right)\)
Rút gọn ( chi tiết 1 xíu nhá)
1CHO A=x + \(\sqrt{5}\) và B=a - \(\sqrt{5}\)
Tính giá trị biểu thức P=a + b - ab
2Rút gọn biểu thức
B= \(\left(\dfrac{1}{x-4}-\dfrac{1}{x+4\sqrt{x}+4}\right)-\dfrac{x+2\sqrt{x}}{\sqrt{x}}\) (với x>0 và x\(\ne\)4
chứng minh răng :
a,\(\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\cdot\left(1-\dfrac{a-\sqrt{a}}{a-1}\right)=1-a\left(a>hoaăặc=0,a\right)\left(a#1\right)\)b, \(\dfrac{\sqrt{ab}-b}{\sqrt{b}}-\sqrt{\dfrac{a}{b}}< 0\left(a>hoac=0,b>0\right)\)
rút gọn
a) \(\dfrac{2-\sqrt{2}}{1-\sqrt{2}}\)+\(\dfrac{\sqrt{2}-\sqrt{6}}{\sqrt{3}-1}\)
b)\(\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{\sqrt{2}+1}-\left(2+\sqrt{3}\right)\)
c)\(\left(\dfrac{5-2\sqrt{5}}{2-\sqrt{5}}-2\right)\times\left(\dfrac{5+3\sqrt{5}}{3+\sqrt{5}}-2\right)\)
d)\(\dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{3}}+\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\)
chứng minh rằng: điều kiện:a> hoặc =0 , b>0
a,\(\dfrac{\sqrt{ab}-b}{\sqrt{b}}-\sqrt{\dfrac{a}{b}}< 0\)
P= \((\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1})\cdot(\dfrac{1-x}{\sqrt{2}})^2\)
(Với x≥0;x≠1)
a)Rút Gọn P
b)Chứng Minh rằng nếu 0<x<1 thì p>0
B=\(\frac{x}{\sqrt{x}-1}\)-\(\frac{2x-\sqrt{x}}{x-\sqrt{x}}\)
a, rút gọn B
b, tính B khi x=3+\(\sqrt{8}\)
rút gọn:
\(\sqrt{16x}-\sqrt{225a^3}+\sqrt{144xy^2}-\sqrt{49x}\)
\(a\sqrt{b}-b\sqrt{a}-\sqrt{a}+\sqrt{b}\)