Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngô Thu Hiền

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}.CMR\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)

Trần Thị Hương
13 tháng 10 2017 lúc 21:36

Từ \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\)

\(\dfrac{a}{b}.\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\left(dpcm\right)\)

Trần Minh An
13 tháng 10 2017 lúc 21:40

Ta có: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\) \(\Rightarrow\left(\dfrac{a}{b}\right)^3=\left(\dfrac{b}{c}\right)^3=\left(\dfrac{c}{d}\right)^3=\dfrac{abc}{bcd}=\dfrac{a}{d}\)

\(\Rightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a}{d}\) (1)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\) (2)

Từ (1) và (2) suy ra: \(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\)

Hải Đăng
13 tháng 10 2017 lúc 21:45

Ta có: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)

\(\Leftrightarrow\dfrac{a^3}{b^3}=\dfrac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}\)

\(\Leftrightarrow\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}\)

\(\Leftrightarrow\dfrac{a}{d}=\dfrac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}\left(đpcm\right)\)

Vậy .................

Chúc bạn học tốt!


Các câu hỏi tương tự
Công chúa cầu vồng
Xem chi tiết
linhlucy
Xem chi tiết
Yến Nguyễn
Xem chi tiết
Lê Thị Hồng Vân
Xem chi tiết
Nguyễn Thị Yến Nga
Xem chi tiết
Soke Soắn
Xem chi tiết
Trà My Kute
Xem chi tiết
Skegur
Xem chi tiết
ღ Rain...
Xem chi tiết