Từ \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\)
Có \(\dfrac{a}{b}.\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\left(dpcm\right)\)
Ta có: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\) \(\Rightarrow\left(\dfrac{a}{b}\right)^3=\left(\dfrac{b}{c}\right)^3=\left(\dfrac{c}{d}\right)^3=\dfrac{abc}{bcd}=\dfrac{a}{d}\)
\(\Rightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a}{d}\) (1)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\) (2)
Từ (1) và (2) suy ra: \(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\)
Ta có: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)
\(\Leftrightarrow\dfrac{a^3}{b^3}=\dfrac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}\)
\(\Leftrightarrow\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}\)
\(\Leftrightarrow\dfrac{a}{d}=\dfrac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}\left(đpcm\right)\)
Vậy .................
Chúc bạn học tốt!