\(=\dfrac{2^{12}\cdot3^{10}+2^9\cdot3^9\cdot2^3\cdot3\cdot5}{-2^{12}\cdot3^{12}+2^{11}\cdot3^{11}}\)
\(=-\dfrac{2^{12}\cdot3^{10}\left(1+5\right)}{2^{11}\cdot3^{11}\cdot\left(2\cdot3-1\right)}=\dfrac{-2}{3}\)
\(=\dfrac{2^{12}\cdot3^{10}+2^9\cdot3^9\cdot2^3\cdot3\cdot5}{-2^{12}\cdot3^{12}+2^{11}\cdot3^{11}}\)
\(=-\dfrac{2^{12}\cdot3^{10}\left(1+5\right)}{2^{11}\cdot3^{11}\cdot\left(2\cdot3-1\right)}=\dfrac{-2}{3}\)
\(\dfrac{10^3+2.5^3+5^3}{55}-\dfrac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
Tính
\(\dfrac{4^6.9^5+6^9.120}{-8^4.3^{12}+6^{11}}\)
Tính
a, \(\dfrac{4^6.9^5+6^9.120}{-8^4.3^{12}-6^{11}}\)
\(\frac{4^6.9^5+6^9.120}{-6^{11}-8^4.3^{12}}\)
Tính :
\(A=\frac{4^6.9^5+6^9.120}{-8^4.3^{12}-6^{11}}\)
1. thực hiện phép tính
a. A=[\(6.\left(\dfrac{-1}{3}\right)-3.\left(\dfrac{1}{3}\right)+1\)]:\(\left(-\dfrac{1}{3}-1\right)\)
b. B=\(\dfrac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
Tính giá trị của biểu thức :
B = \(\dfrac{4^6.9^5+6^9.120}{-8^4\cdot3^{12}+6^{11}}\)
Tính giá trị các biểu thức sau:
a, A = \(\left(3\dfrac{5}{6}-1\dfrac{1}{3}\right)\left(3\dfrac{4}{15}-2\dfrac{3}{5}\right)\)
b, B= \(\dfrac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\) c, C = \(\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{6}\right)\left(1-\dfrac{1}{10}\right)\left(1-\dfrac{1}{15}\right)...\left(1-\dfrac{1}{210}\right)\)
\(\dfrac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}\)-\(\dfrac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)